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C4-free zero-divisor graphs
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Abstract. In this paper we give a characterization for all commu-
tative rings with 1 whose zero-divisor graphs are C4-free.
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1. INTRODUCTION

The graph theory terminology in general is followed in this study. [9].
Specifically, let G = (V,E) be a graph with vertex set V of order n and
edge set E. We denote the degree of a vertex v in G by dG(v), which is
the number of edges incident to v. A graph G is complete if there is an
edge between every pair of the vertices. A subset X of the vertices of a
graph G is called independent if there is no edge with two endpoints in
X. A graph G is called bipartite if its vertex set can be partitioned into
two subsets X and Y such that every edge of G has one endpoint in X
and other endpoint in Y . A graph G is said to be star if G contains one
vertex in which all other vertices are joined to this vertex and G has
no other edges. A path of length n is an ordered list of distinct vertices
v0, v1, ..., vn such that vi is adjacent to vi+1 for i = 1, 2, ..., n−1. We use
v0−v1−...−vn to refer such path. A (u, v)-path is a path with endpoints
u and v. A cycle is a path v0, v1, ..., vn with an extra edge v0vn. A graph
G is connected if it has a (u, v)-path for each pair u, v ∈ V (G).

By the zero-divisor graph Γ(R) of a ring R we mean the graph with
vertices Z(R) \ {0} such that there is an (undirected) edge between
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vertices a and b if and only if a 6= b and ab = 0. Thus Γ(R) is the
empty graph if and only if R is an integral domain. The concept of
zero-divisor graphs has been studied extensively by many authors. For
a list of references and the history of this topic the reader is referred to
[1, 2, 3, 4, 6, 7].

Bipartie zero-divisor graphs are studied by Akbari et al. [2], Dancheng
et al. [6], Demeyer et al. [7], and Jafari Rad et al. [8]. Dancheng et al.
in [6] posed the following open question.

Question. How can one characterize the zero-divisor graphs which
contain no rectangles?

In this paper I will characterize all commutative rings with 1 whose
zero-divisor graphs are C4-free.

We denote by Kn and Cn the complete graph and the cycle on n
vertices. Also we denote by Km,n the complete bipartite graph.

Throughout, R will always be a commutative ring with 1 6= 0, unless
we state R does not have 1. We also note that by G ≤ H for two graphs
we mean that G is a subgraph of H, while by R ≤ S for two rings we
mean that R is a subring of S.

Consider the following rings.
T4 = {0, x, x + 1, 1}, where x2 = 2x = 2 = 0,
T8 = {0, x, x2, x+x2, 1, 1+x, 1+x2, 1+x+x2}, where x3 = 2x = 2 = 0,
T ′8 = {0, x, x2, x+x2, 1, 1+x, 1+x2, 1+x+x2}, where x3 = 2x = 4 = 0,
T9 = {0, 1,−1, x,−x, 1 +x, 1−x, x−1,−1−x}, where x2 = 3x = 3 = 0.

We make use of the following.

Theorem 1.1. ([8]) Let R be a commutative ring with identity, and R
is not an integral domain. Then Γ(R) contains no triangle, if and only
if R satisfies one of the following.
(1) Z(R) = I ∪ J , where I, J are commutative domains as rings, and
I ∩ J = 0.
(2) R ∼= Z4, Z8, Z9, T4, T8, T ′8 or T9.

2. THE MAIN RESULT

We shall prove the following.

Theorem 2.1. Let R be a commutative ring with identity, R is not an
integral domain, and |R| 6∈ {8, 16, 32, 64}. Then Γ(R) is C4-free if and
only if R satisfies one of the following.
(1) |R| = 9 and Nil(R) = {0, x,−x},
(2) R ∼= Z2 × F , where F is a field.

For the proof of this theorem we consider three cases, Γ(R) has no
triangle, nil(R) = 0 or nil(R) 6= 0.

We begin with the following lemma.



C4-free zero-divisor graphs 35

Lemma 2.2. (a) If x is nilpotent, then1 + x is invertable.
(b) If x ∈ R, then | R

ann(x) | = |Rx|.
(c) Let R = R1 × R2. If min{|R1|, |R2|} ≥ 3, Then Γ(R) contains a

C4.
(d) Γ(R1 ×R2 ×R3) is C4-free if and only if Ri

∼= Z2 for i = 1, 2, 3.
(e) Let R = R1 ×R2, and R1

∼= Z2. Then Γ(R) contains a C4 if and
only if ∆(Γ(R2)) ≥ 2.

Proof. Is elementary. �

Theorem 2.3. Let R be a commutative ring with identity, and R is not
an integral domain. If Γ(R) has no triangle, then Γ(R) is C4-free if and
only if R = Z2 × F , where F is a field.

Proof. By Theorem 1.1, Γ(R) is C3-free if and only if (1) or (2) holds
in Theorem 1.1. If R satisfies (2), then |Z(R)| ≤ 4. So Γ(R) is C4-free.
Let R satisfies (1). By Lemma 2.2(c), |I| = 2 or |J | = 2. Let |I| = 2,
and I = {0, x}. Hence by Lemma 2.2(b), |RI | = 2, and so I is a maximal
ideal of R. We deduce that I + J = R. Thus R ∼= I × J . Since 1 ∈ R, I
and J are fields. For the converse notice that Γ(R) is a star. �

Proposition 2.4. (a) Let a, b be two distinct elements of R.
If |(ann(a) ∩ ann(b)) \ {a, b, 0}| ≥ 2, then Γ(R) contains a C4.
(b) Let Nil(R) = 0. If Γ(R) contains a triangle, then Γ(R) is C4-free

if
and only if R ∼= Z2 × Z2 × Z2.

Proof. (b) Let x − y − z − x be a triangle in Γ(R). Let I = ann(x)
and J = ann(y). Since y, z ∈ I, |I| ≥ 3. Also I ∩ Rx = 0 since
Nil(R) = 0. By Lemma 2.2(c), |Rx| = 2, and by Lemma 2.2(b), |RI | = 2.

Similarly, |RJ | = 2. On the other hand by case(a), |I ∩ J | = 2. Now

| R
I∩J | ≤ |

R
I ||

R
J |. This implies that |R| ≤ 8, and I = {0, y, z, y + z}. Note

that |I| = |J | = |ann(z)| = 4. Consequently, ann(x2) = I, ann(y2) = J
and ann(z2) = ann(z). Since I 6= J , we have I + J = R and |R| = 8.
We deduce that R ∼= I ×Rx. We next show that y2 = y. Suppose that
y2 6= y. Hence y2 = z or y2 = y + z. If y2 = z, then y3 = yz = 0,
a contradiction. So y2 = y + z. Therefore y2(y − 1) = yz = 0, and
y − 1 ∈ J = {0, x, z, x + z}. In each possiblity for y − 1 we get a
contradiction, since y(y − 1) = 0. Thus y2 = y. Similarly, z2 = z,
y(y+ z) = y, and z(y+ z) = z. We conclude that I ∼= Z2×Z2. It proves
the nontrivial side, and the proof is complete. �

Lemma 2.5. If Γ(R) is C4-free and xn = 0, then n ≤ 4.

Proof. If n ≥ 5, then xn−1 − xn−2 − xn−3 − (xn−1 + xn−2) − xn−1 is a
C4, a contradiction. �
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Let

A = {x : x2 = 0, x 6= 0},

B = {x : x3 = 0, x2 6= 0},
and

C = {x : x4 = 0, x3 6= 0}.

Proposition 2.6. (a) If C 6= ∅, then Γ(R) is C4-free if and only if
|R| = 16, and Nil(R) = {0, x, x2, x3, x+x2, x+x3, x2 +x3, x+x2 +x3},
where x ∈ C.

(b) Let Nil(R) = {x : x3 = 0} and B 6= ∅. Then Γ(R) is C4-free if
and only if R = {0, x, x2, x+x2, 1, 1+x, 1+x2, 1+x+x2}, where x ∈ B
and char(R) ∈ {2, 4, 8}.

Proof. (a) Let x ∈ C, and let C1 = {0, x, x2, x3, x + x2, x + x3, x2 +
x3, x+x2 +x3}. We show that ann(x2) ⊆ C1. If r ∈ ann(x2) \C1, then
rx2 = 0 and so r− x2− x3− (x2 + x3)− r is a C4, a contradiction. Now
we obtain ann(x2) = {0, x2, x3, x2 +x3}. For any r ∈ R, rx2 ∈ ann(x2).
This implies that rx2 = 0, rx2 = x2, rx2 = x3, or rx2 = x2 + x3.
We deduce that r ∈ ann(x2), r − 1 ∈ ann(x2), r − 1 − x ∈ ann(x2)
or r − x ∈ ann(x2). We obtain | R

ann(x2)
| = 4. Since |ann(x2)| = 4,

we obtain |R| = 16. But ann(x3) 6= R. So |ann(x3)| = 8. Therefore
Nil(R) = ann(x3) is the unique maximal ideal of R. We have
R = {0, x, x2, x3, x + x2, x + x3, x2 + x3, x + x2 + x3, 1, 1 + x, 1 + x2, 1 +
x3, 1 + x + x2, 1 + x + x3, 1 + x2 + x3, 1 + x + x2 + x3}.

By Lemma 2.2, Z(R) = Nil)R). Thus Γ(R) = Γ(Nil(R)), and so is
C4-free. The converse is trivial.

(b) Let x ∈ B. First we show that ann(x) = {0, x2}. Let r ∈
ann(x)\{0, x2}. We have r−x−x2−(x+x2)−r is a C4, a contradiction.
So ann(x) = {0, x2}. Hence Rx2 = {0, x2} and | R

ann(x2)
| = 2. Next we

show that ann(x2) = {0, x, x2, x+x2}. Let r ∈ ann(x2)\{0, x, x2, x+x2}.
Therefore rx2 = 0 and rx ∈ ann(x). Thus rx = 0 or rx = x2. Since
r 6∈ ann(x), we have rx = x2, and so (r − x)x = 0. This implies
that r − x ∈ ann(x) = {0, x2}. Therefore r ∈ {0, x, x2, x + x2}, a
contradiction. Hence |R| = 8, and Nil(R) = {0, x, x2, x + x2}. For the
converse, notice that |Z(R)| = 3. �

Lemma 2.7. (a) Let Nil(R) = {x : x2 = 0}, A 6= ∅, and char(Nil(R)) 6=
2. Then Γ(R) is C4-free if and only if |R| = 9 and Nil(R) = {0, x,−x}.

(b) Let Nil(R) = {x : x2 = 0}, A 6= ∅, char(Nil(R)) = 2, and Nil(R)
has at least two nontrivial distinct elements x, y such that xy 6= 0. Then
Γ(R) is C4-free if and only if |R| = 16 and Nil(R) = {0, x, xy, x +
xy, y, y + x, y + xy, y + x + xy}.
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Proof. (a) Let x ∈ B, and x 6= −x. We show that ann(x) = {0, x,−x}.
Let r, s be two distinct elements of ann(x)\{0, x,−x}. Therefore r−x−
s−(−x)−r is a C4, a contradiction. So |ann(x)\{0, x,−x}| ≤ 1. On the
other hand {0, x,−x} ≤ ann(x), and so 3 | |ann(x)|. We deduce that
ann(x) = {0, x,−x}, and {0, x,−x} = Rx. By Lemma 2.2(b), | R

ann(x) | =
3, and so |R| = 9. Hence R = {0, x,−x, 1, 1+x, 1−x,−1,−1+x,−1−x}.
By Lemma 2.2(a), Z(R) = {0, x,−x} = Nil(R). For the converse by
Lemma 2.2(a), Z(R) = {0, x,−x} and Γ(R) = K2.

(b) We first show that ann(x) = {0, x, xy, x + xy}. Let r ∈ ann(x) \
{0, x, xy, x+xy}. Hence r−x−(x+xy)−xy−r is a C4, a contradiction.
So ann(x) = {0, x, xy, x + xy}. On the other hand Rx ≤ ann(x), which
implies that Rx = ann(x). By lemma 2.2(b), | R

ann(x) | = 4. Thus |R| =
16, and Nil(R) = {0, x, xy, x + xy, y, y + x, y + xy, y + x + xy}. For the
converse by Lemma 2.2, Z(R) = Nil(R), and Γ(R) is C4-free. �

Lemma 2.8. (a) Let Nil(R) = {x : x2 = 0}, A 6= ∅, char(Nil(R)) = 2,
and for any pair of elements x, y in Nil(R), xy = 0. If Γ(R) is C4-free
then |Nil(R)| ≤ 4.

(b) Let Nil(R) = {0, x}, and Γ(R) contains a triangle. Then Γ(R)
contains a C4.

(c) Let Nil(R) = {0, x, y, x+ y}, where 2x = 2y = xy = 0. If Γ(R) is
C4-free, then |R| ∈ {8, 16, 32, 64}.

Proof. (a) Is trivial.
(b) Assume to the contrary that Γ(R) is C4-free. Let a− b− c− a is

a triangle in Γ(R). Let r ∈ R. If ra 6∈ {0, a, b, c}, then a− b− ra− c− a
is a C4, a contradiction. So ra ∈ {0, a, b, c}. We consider two cases.

Case 1. x 6∈ {a, b, c}. We have ra ∈ {0, a, b, c}. If ra = b, then
ra2 = ba = 0 and so (ra)2 = 0. Hence ra = 0, a contradiction. Thus
ra 6= b. Similarly ra 6= c. We deduce that Ra = {0, a} and by Lemma
2.2(b), | R

ann(a) | = 2. Similarly, | R
ann(b) | = 2. Since a, b 6∈ ann(a) ∩

ann(b), by Proposition 2.4(a) |ann(a)∩ann(b)| = 2. On the other hand
ann(a) + ann(b) = R, and so |R| = 8. Also ann(a) = {0, b, c, b + c} and
R = {0, b, c, b + c, a, a + b, a + c, a + b + c}. But x ∈ R. So x = b + c,
a+ b, a+ c or a+ b+ c. If x = b+ c, then x2 = b2 + c2 = 0 which implies
that b2 = −c2 and so b3 = −c2b = 0. Hence b = x, a contradiction. So
x 6= b + c. By a similar discussion we obtain x 6∈ R, a contradiction.

Case 2. x ∈ {a, b, c}. Without loss of generality assume that x = c.
If a + x 6= b, then a − x − (a + x) − b − a is a C4, a contradiction. So
a+x = b, and hence (a+x)a = 0, that is a2 = 0. By assumption a = x,
a contradiction.
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(c) Let I = ann(x) and J = ann(y). By Proposition 2.4(a), |I ∩ J | =
4. On the other hand Rx ⊆ Nil(R). By lemma 2.2, |RI | ∈ {2, 4}.
Similarly, |RJ | ∈ {2, 4}. We conclude that |R| ∈ {8, 16, 32, 64}. �

As a consequence of Lemmas 2.7 and 2.8 we obtain the following.

Proposition 2.9. Assume that R contains a triangle, A 6= ∅, and
|R| 6∈ {8, 16, 32, 64}. Then Γ(R) is C4-free if and only if |R| = 9 and
|Nil(R)| = 3.

Now the result follows from Theorem 2.3, and Propositions 2.4, 2.6
and 2.9.
Acknowledgement. The author would like to thank the referee for
their very useful comments which improved the paper. The paper is
supported by grant of University of Shahrood.

References

[1] S. Akbari, and A. Mohammadian, Zero-divisor graphs of non-commutative
rings, Journal of Algebra, 296 (2006), 462-479.

[2] S. Akbari, H.R. Maimani, and S. Yassemi, When a zero-divisor graph is planar
or a complete r-partite graph, Journal of Algebra, 270 (2003), 169180.

[3] D.F. Anderson, A. Frazier, A. Lauve, and P.S. Livingston, The zero-divisor
graph of a commutative ring II, in: Ideal Theoretic Methods in Commuta-
tive Algebra (Columbia, MO, 1999), Dekker, New York,(2001), 6172.

[4] D.F. Anderson, and P.S. Livingston, The zero-divisor graph of a commutative
ring, J. Algebra, 217 (1999), 434447.

[5] M.F. Atiyah, Ian G. Macdonald, Introduction to Commutative Algebra,
Addison-Wesley Publishing Co, Reading, Mass.-London-Don Mills, Ont,
(1969).

[6] L. Dancheng, and W. Tongsuo, On bipartite zero-divisor graphs, Discrete
Mathematics, 309 (2009), 755762.

[7] F. Demeyer, and K. Schneider, Automorphisms and zero divisor graphs of
commutative rings, International J. Commutative Rings, 1 Issue 3 (2002),
93106.

[8] N. Jafari Rad, and S.H. Jafari, A characterization of bipartite zero-divisor
graphs, accepted for publication.

[9] D.B. West, “Introduction To Graph Theory”, Prentice-Hall of India Pvt. Ltd.
(2003).


	1. INTRODUCTION
	2. THE MAIN RESULT
	References

