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Abstract. In this paper, sufficient conditions for the existence of
nonnegative solutions of a boundary value problem for a fractional
order differential equation are provided. By applying Kranoselskii‘s
fixed–point theorem in a cone, the existence of solutions of an aux-
iliary BVP formulated by truncating the response function is first
proved. Then the Arzela–Ascoli theorem is used to take C1 limits
off sequences of such solutions.
Keywords: Boundary value problem; Nonnegative solutions; Ca-
puto fractional derivative; Equicontinuous sets.

1. INTRODUCTION

Fractional differential equations have gained a considerable impor-
tance due to their varied applications in the field of visco-elasticity,
feed back amplifiers, electrical circuits, electro analytical chemistry, frac-
tional multipoles, neuron modelling encompassing different branches of
Physics, Chemistry and Biological sciences. So far there have been sev-
eral fundamental works on the fractional derivative and fractional dif-
ferential equations, written by Miller and Ross [4], Podlubny [5] and
others [6–8]. Mathematical aspects of fractional order differential equa-
tions have been discussed in details by many authors [9–17].
Boundary value problems with integral boundary conditions constitute
a very interesting and important class of problems. For boundary value
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problems with integral boundary conditions and comments on their im-
portance, we refer the reader to the papers [1–4, 8, 11–15] and the
references therein. Moreover, boundary value problems with integral
boundary conditions have been studied by a number of authors, see [5,
6, 9, 10, 12]. The goal of this paper is to give existence and uniqueness
results for the problem (1.1)-(1.3). Our approach here is based on the
Krasnoselskii’s fixed–point theorem, the Arzela–Ascoli theorem and the
Banach contraction principle [20, 21, 27].
I established sufficient conditions ensuring that a fractional order differ-
ential equation admits a nonnegative solution, whose slope at the end
of times depends on its values on the whole time interval. To be more
precise, consider the following fractional differential equation:

d

dt
{cDα

0+y(t)}+ q(t)f(y(t), y′(t)) = 0 , a.a. t ∈ [0, 1], (1.1)

associated with the boundary conditions

y(0) = 0, y′(0) = υ > 0, (1.2)

and

cDα
0+y(1) =

∫ 1

0

cDα
0+y(s) dg(s), (1.3)

where cDα
0+ is the Caputo fractional derivative of order α ∈ (1, 2), f :

[0, 1]× R2 −→ R, g : [0, 1] −→ [0, ∞) are given functions and in (1.3)
the integral is meant in the Riemann–Stieljes sense.

2. THE BASIC TOOLS

We begin in this section with recall and introduce some notations,
definitions and preliminary facts that will be used in the remainder of
this paper [4, 5, 7, 20, 21].
We shall denote by R the real line, by R+ the interval [0, ∞), and
by I the interval [0, 1]. Let also C1

0 (I) be the space of all functions
y : I −→ R, whose first derivative y′ is absolutely continuous on I and
y(0) = 0. The set C1

0 (I) is a Banach space when it is furnished with
the norm ‖ ‖ defind by ‖y‖ = sup{|y′(t)| : t ∈ I}. We denote by L1(I)
the space of all functions y : I −→ R which are Lebesgue integrable on

I, endowed with the usual norm ‖y‖1 =
∫ 1
0 |y(t)| dt. Finally L1

+(I) the
space of all functions y : I −→ R+ which are Lebesgue integrable on I,
endowed with the norm ‖y‖1.

A very usual technique to get such results is based on fixed-point
theorems in cones and especially on the following well–known fixed–
point theorem due to Krasnoselskii [21].
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Theorem 2.1. Let B be a Banach space and let K be a cone in B.
Assume Ω1, Ω2 are open subsets of B, with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2 and let

F : K ∩
(
Ω2\Ω1

)
−→ K

be a completely continuous operator such that either

‖Fu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, ‖Fu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2

or

‖Fu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, ‖Fu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then F has a fixed point in K ∩ Ω2\Ω1.

Definition 2.2. A map f : I −→ R is said to be L1−Caratheodory if

(i) t −→ f(t, u) is measurable for each u ∈ R;
(ii) t −→ f(t, u) is continuous for almost each t ∈ I;
(iii) for every r > 0 there exists hr ∈ L1(I) such that |f(t, u)| ≤ hr(t)

for a.e. t ∈ I and all |u| ≤ r.

Definitions of Caputo and Remann−Liouville fractional derivative/integral
and their relation are given below.

Definition 2.3. For a function u defined on an interval [a, b], the
Remann−Liouville fractional integral of f of order α > 0 is defined by

Iαa+y(t) =
1

Γ(α)

∫ t

a
(t− s)α−1y(s) ds, t > a,

and Remann−Liouville fractional derivative of u of order α > 0 defined
by

Dα
a+y(t) =

dn

dtn
{
In−α
a+

y(t)
}
,

where n − 1 < α ≤ n while Caputo fractional derivative of y of order
α > 0 defined by is defined by

cDα
a+y(t) = In−α

a+

{
y(n)(t)

}
.

An important of relation among of Caputo fractional derivative and
Riemanna−Liouville fractional derivative is the following expression

Dα
a+y(t) = cDα

a+y(t) +

n−1∑
j=1

y(j)(a)

Γ(j − α+ 1)
(t− a)j−α (2.1)

We denote cDα
a+y(t) as cDα

ay(t) and Iαa+y(t) as Iαa y(t). Further cDα
0+y(t)

and Iα0+y(t) are referred as cDαy(t) and Iαy(t), respectively.
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Theorem 2.4. Let y ∈ Cm ([0, b], R) and α, β ∈ (m − 1, m), m ∈ N.
Then

(1) cDαIαy(t) = y(t).
(2) IαIβy(t) = Iα+βy(t).
(3) limt→0+ {cDαy(t)} = limt→0+ {Iαy(t)}.
(4) cDαλ = 0, where λ is constant.

(5) Iα {cDαy(t)} = y(t)−
∑m−1

k=0
y(k)(0)
k! tk.

(6) cDα{Dmy(t)} = cDα+my(t), m = 0, 1, 2, · · · .
(7) The interchange of the differentiation operators in formula (6)

is allowed under conditions:

cDα {cDny(t)} = cDn {cDαy(t)} = cDα+ny(t),

as y(j)(0) = 0 for j = m, m+ 1, · · · , n.

Lemma 2.5. (Lemma 2.22 [7]). Let α > 0. Then Iα (cDαy(t)) = y(t)+
c0 + c1t+ c2t

2 + · · ·+ cr−1t
r−1 for some ci ∈ R, i = 0, 1, · · · , r− 1, r =

[α] + 1.

3. THE MAIN RESULTS

Consider equation (1.1) associated with the conditions (1.2), (1.3). It
is clear that, without loss of generality, we can assume that g(0) = 0. By
a solution of this boundary value problem for we mean a function y ∈
C1
0 (I) satisfying condition (1.3), as well as equation (1.1) for almost all

t ∈ I. Searching for the existence of solutions, we shall first reformulate
the problem to an operator equation of the form y = Fy, where F is a
suitable operator. To find F , consider an equation of the form

dz(t)

dt
= −h(t), a.e. on I, (3.1)

subject to condition (1.1), (1.3), where

cDαy(t) = z(t). (3.2)

By integration in Eq. (3.1) we get

z(t) = z(1) +

∫ 1

t
h(r)dr, t ∈ I. (3.3)

Using Eq. (3.2) into Eq. (3.3) yields

cDαy(t) = cDαy(1) +

∫ 1

t
h(r)dr, t ∈ I. (3.4)
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Now, multiply equation (3.4) by dg(t) and integrate over [0, 1], to get∫ 1

0

cDαy(t)dg(t) = cDαy(1)

∫ 1

0
dg(t) +

∫ 1

0

∫ 1

t
h(r)drdg(t)

= cDαy(1)(g(1)− g(0)) +

∫ 1

0

∫ 1

t
h(r)drdg(t)

Therefore from (1c) it follows that

cDαy(1) = γ

∫ 1

0

∫ 1

t
h(r) dr dg(t), (3.5)

where

γ =
1

1− g(1)

Substituting Eq. (3.5) into Eq. (3.4) we obtain

cDαy(t) = γ

∫ 1

0

∫ 1

t
h(r) dr dg(t) +

∫ 1

t
h(r)dr.

Using Lemma 2.5 we get

y(t) = −c0−c1t+
γ tα

Γ(α+ 1)

∫ 1

0

∫ 1

t
h(r) dr dg(t)+

1

Γ(α)

∫ t

0

∫ 1

s
(t−s)α−1h(r)drds,

and

y′(t) = −c1+
γ tα−1

Γ(α)

∫ 1

0

∫ 1

t
h(r) dr dg(t)+

α− 1

Γ(α)
+

∫ t

0

∫ 1

s
(t−s)α−2h(r)drds.

Applying the condition (1.2), we find that

y(t) = υt+
γ tα

Γ(α+ 1)

∫ 1

0

∫ 1

t
h(r) dr dg(t)+

1

Γ(α)

∫ t

0

∫ 1

s
(t−s)α−1h(r)drds,

where υ = y′(0) > 0. This process shows that solving the boundary
value problem (1.1)–(1c) is equivalent to solving the operator equation
y = Fy in C1

0 (I) where F is the operator defined by

(Fy)(t) = υt+
γ tα

Γ(α+ 1)

∫ 1

0

∫ 1

t
q(u)f(y(u, y′(u)) du dg(t)

+
1

Γ(α)

∫ t

0

∫ 1

s
(t− s)α−1q(u)f(y(u, y′(u)) duds. (3.6)

Before presenting the following results, we give the notation and the
list of our assumptions, used in this paper. Let

σ := ‖q‖1{γg(1) + υ + 1}
and K+ := {y ∈ C1

0 (I) : y ≥ 0, y is nondecreasing and y′ is nonincreasing}
which is a cone in C1

0 (I).
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(H1) The function f is a real–valued continuous function defined at
least on I × R2, satisfying the inequality f(u, v) ≥ 0 when u ≥
0, v ≥ 0. Also, q ∈ L1

+(I) and g : I → R is nondecreasing
function.

(H2) There exists a nondecreasing function ψ : R+ → (0, +∞) such
that f(u, v) ≤ ψ(v) for all (u, v) ∈ R+.

(H3) The function f : [0, 1]× R −→ R is an L1−Caratheodory,
(H4) There exists a positive real value µ such that |f(u(t), u′(t)) −

f(v(t), v′(t))| ≤ µ|u(t)− v(t)| for all u, v ∈ C1
0 (I) and t ∈ [0, 1].

Moreover, µ‖q‖1 < Γ(α+ 1).

Lemma 3.1. Consider the functions f, q and g satisfying assumptions
(H1)-(H4). Then the operator F : C1

0 (I) −→ C1
0 (I) is completely con-

tinuous and the operator F maps the cone K+ into itself.

Proof. The proof will be given in three steps.
Step 1. F is continuous.
Let ym be a sequence such that ym → y in C1

0 (I). Then

|F (ym)(t)− F (y)(t)| ≤
∫ t

0

∫ 1

s

|q(u)| |f(ym(u), y′m(u))− f(y(u), y′(u))|
Γ(α)(t− s)1−α

duds,

≤ µ‖q‖1‖ym − y‖
Γ(α)

∫ t

0

∫ 1

s
(t− s)α−1du ds

≤ µ‖ym − y‖
Γ(α+ 1)

tα.

Since f is continuous and ym, y belong to C1
0 (I), then ‖F (ym)(t) −

F (y)(t)‖ → 0 as m→∞.
Step 2. F maps bounded sets into bounded sets in C1

0 (I).
Indeed, it is enough to show that there exists a positive constant ρ such
that for each y ∈ Br = {y ∈ C1

0 (I) : ‖y‖ ≤ r} one has ‖F (y)‖ ≤ ρ. Let
y ∈ Br. Then by (H2), for each t ∈ [0, 1] we have

‖F (y)(t)‖ ≤ ‖q‖1ψ(y′(0)){γg(1) + 1}+ υ

≤ ‖q‖1ψ(‖y‖){γg(1) + 1} ≤ ‖q‖1ψ(r){γg(1) + 1}+ υ := ρ

Step 3. F maps bounded sets into equicontinuous sets of C1
0 (I).

Let t1, t2 ∈ [0, 1], t1 < t2 and Br be a bounded set of C1
0 (I) as in step

2. Let y ∈ Br and t ∈ [0, 1] we have

|F (y)(t2)− F (y)(t1)| ≤ |F (y)(t2)− F (y)(t1)|
≤ υ|t2 − t1|+ γ(g(1) + 1)‖q‖‖ψ‖|tα2 − tα1 |.

As t2 −→ t1 the right-hand side of the above inequality tends to zero.
Then F (Br) is equicontinuous. As a consequence of Step 1 to 3 together
with Arzela-Ascoli theorem we can conclude that F : C1

0 (I) −→ C1
0 (I)
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is completely continuous.
It is easy to see that, under condition (H1), the operator F maps the
cone K+ into itself. �

Lemma 3.2. Consider the functions f, q and g satisfying assumption
(H1). Then there exists m > 0 such that for any y ∈ K+ with ‖y‖ = m,
we have ‖Fy‖ ≥ ‖y‖.

Proof. We assum the contrary. Then for every positive integer n, there
exists a function yn ∈ K+, with ‖yn‖ = n−1 and ‖Fyn‖ < ‖yn‖. Let
zn = y′n. Then for all n and every s ∈ [0, 1] we have

0 ≤ zn(s) ≤ zn(0) = ‖yn‖,
which implies that zn → 0 in AC(I). So, we must have

0 ≥ lim
n→∞

zn(0) ≥ lim
n→∞

(Fyn)′(0) = υ

which is a contracdiction.
�

Now we are ready to give our first main result.

Theorem 3.3. Consider the functions f, q and g satisfying assumptions
(H1) and (H3). Then the boundary value problem (1.1)–(1.3) has at least
one solution.

Proof. For each positive integer n, define the function

fn(u, v) = min{f(u, v), n}
and consider the problem (3.7), (1.2), (1.3) where Eq. (3.7) stands for
the equation

cDαy(t) = q(t)fn(y(t), y′(t)), a.a t ∈ [0, 1]. (3.7)

From (H3), we have fn(u, v) ≤ ψ(v) for all u, v ∈ R+, n = 1, 2, · · · .
Since the function fn satisfies Assumption (H1), by Lemma 3.2, there
exists a positive real number mn such that for every y ∈ K+ with ‖y‖ =
mn, it holds that ‖Fny‖ ≥ ‖y‖, where

(Fny)(t) = υt+
γ tα

Γ(α+ 1)

∫ 1

0

∫ 1

t
q(u)fn(y(u, y′(u)) du dg(t)

+
1

Γ(α)

∫ t

0

∫ 1

s
(t− s)α−1q(u)fn(y(u, y′(u)) duds. (3.8)

Moreover, if y ∈ K+ is such that ‖y‖ = nσ =: Mn, then

|Fny(t)| ≤ υ + γn

∫ 1

0

∫ 1

t
|q(s)|dudg(t) + n

∫ t

0
|q(u)|du.
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Then,

‖Fny‖ ≤ n‖q‖1{γg(1) + υ + 1} = nσ = Mn = ‖y‖.
Hence, by Theorem 2.1, there exists a solution yn ∈ C1

0 (I) of the problem
(3.2), (1.2), (1.3), such that mn ≤ ‖yn‖ ≤Mn.
Now, prove that Ω := {y ∈ C1

0 (I) : y is solution of the (1.1)–(1.3)} is
compact. Let {ym}∞m=1 be a sequence in Ω, then

ym(t) = υt+
γ tα

Γ(α+ 1)

∫ 1

0

∫ 1

t
q(u)f(ym(u), y′m(u)) du dg(t)

+
1

Γ(α)

∫ t

0

∫ 1

s
(t− s)α−1q(u)f(ym(u), y′m(u)) duds.

As in Steps 2 and 3 we can easily prove that there exists L > 0 such
that ‖ym‖ < L, for all m ≥ 1, and the set {ym}∞m=1 is equicontinuous
in C1

0 (I). Hence by Arzela-Ascoli theorem we can conclude that there
exists a subsequence of {ym}∞m=1 converging to y in C1

0 (I). Using f is
an L1−Carathedory we can prove that

y(t) = υt+
γ tα

Γ(α+ 1)

∫ 1

0

∫ 1

t
q(u)f(y(u), y′(u)) du dg(t)

+
1

Γ(α)

∫ t

0

∫ 1

s
(t− s)α−1q(u)f(y(u), ym(u)) duds.

Therefore Ω is compact. �

Theorem 3.4. Consider the functions f, q and g satisfying assump-
tions (H1) and (H4). Then the boundary value problem (1.1)–(1.3) has
a unique solution in C1

0 (I).

Proof. It is clear to show that, F is a contraction and hence the Banach
contraction principle yields that F has a unique fixed point which is a
solution to (1.1)-(1.2). �

Example 3.5. Consider the following boundary value problem:

d

dt

{
cD

3
2 y(t)

}
= e−t

{
1

2
cos2 y(t) + y′(t)

}
, t ∈ [0, 1], (3.9)

y(0) = 0, y′(0) = υ > 0 (3.10)

cD
3
2 y(1) =

∫ 1

0

cD
3
2 y(s)dg(s). (3.11)

We observe that

g(t) =


0, if 0 ≤ t < 1

2 ,

1
2 , if 1

2 ≤ t ≤ 1,
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the boundary condition (1.3) reduces to the boundary condition (11c).
Moreover, if we set

f(u, v) =
1

2
cos2 u+ v and ψ(v) :=

1

2
+ v,

we can see that f(u, v) ≤ ψ(v). Then by Theorem 3.3 the boundary
value problem (3.1)–(3.3) has atleast one solution.

4. CONCLUSIONS

Nonnegative solutions for nonlinear fractional differential equations
comprising of standard Caputo fractional derivative have been discussed.
The conditions on coefficients when the solutions are unique and further
unique as well as positive, have been worked out. The present work pro-
vides insights in the equations encountered in fractional order dynamical
systems and controllers which further may be explored.
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