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COMPLEXITION AND SOLITARY WAVE SOLUTIONS OF THE
(2+1)-DIMENSIONAL DISPERSIVE LONG WAVE EQUATIONS

H. TRIKI 1 AND A. BISWAS 2

ABSTRACT. In this paper, the coupled dispersive (2+1)-dimensional long wave equa-
tion is studied. The traveling wave hypothesis yields complexiton solutions. Subse-
quently, the wave equation is studied with power law nonlinearity where the ansatz
method is applied to yield solitary wave solutions. The constraint conditions for the
existence of solitons naturally fall out of the derivation of the soliton solution.

Classification AMS:37K10, 35Q51,35Q55

1. I NTRODUCTION

The study of nonlinear evolution equations (NLEEs) has been going on for the past
few decades [1-10]. There are several theoretical physicists that are studying these
equations to obtain closed form exact and physically relevant meaningful solutions.
Success has been overwhelming. These variety of solutions have helped the physi-
cists, engineers, biologists and applied mathematicians beyond measure. Besides the
usual solitons and solitary waves, some of the additional solutions that are obtained
lately are shock waves, peakons, stumpons, cuspons, complexitons, Gaussons, cnoidal
waves, snoidal waves and several others.
This paper will obtain complexiton solution and solitary wave solution of the (2+1)-
dimensional dispersive long wave equations. There are several integrability techniques
that have been developed in the past few decades to extract these solutions from the
governing NLEEs. Some of these commonly used techniques are Adomian decompo-
sition method,G′/G method [5], exp-function method [5], Fan’sF -expansion method,
simplest equation method, semi-inverse variational method [2] just to name a few.
This paper will adopt the traveling wave hypothesis method and the ansatz approach
to obtain solitary waves and complexiton solutions to the (2+1)-dimensional nonlinear
dispersive wave equations.
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2. M ATHEMATICAL ANALYSIS

This section will carry out the analysis to derive the soliton and complexiton solu-
tions of the equation of study. The analysis will be in the following two sub-sections.
In the first case, the regular dispersive long wave equations will be studied, while in
the second section, the power law nonlinearity will be addressed. The traveling wave
hypothesis will be used to integrate in the first case and the ansatz method will be
exploited later to solve the wave equation with power law nonlinearity.

2.1. Complexiton Solution. The (2+1)-dimensional dispersive long wave equations,
in shallow water, are given by [1]

uyt + vxx +
1

2

(
u2

)
xy

= 0, (2.1)

vt + (uv + u + uxy)x = 0, (2.2)

whereu andv are functions of the spatial variablesx, y and the temporal variablet,
and subscripts denote partial derivatives.

By introducing a variableξ such that [1]

ξ = k1x + k2y + k3t + ξo, (2.3)

with k1, k2, k3, andξo are nonzero real constants, the system (2.1) and (2.2) is reduced
to the ordinary differential equations in the form

k2k3u
′′ + k2

1v
′′ +

1

2
k1k2

(
u2

)′′
= 0, (2.4)

k3v
′ + k1 (uv + u + k1k2u

′′)
′
= 0, (2.5)

Integrating (2.4) once gives

k2k3u
′ + k2

1v
′ +

1

2
k1k2

(
u2

)′
= C, (2.6)

whereC is an integration constant. Integrating Eq. (2.6) once again, we obtain

k2k3u + k2
1v +

1

2
k1k2u

2 = C1, (2.7)

whereC1 is again an integration constant. From Eq. (2.7), we find that

v (ξ) =
C1

k2
1

− k2k3

k2
1

u− k2

2k1

u2. (2.8)

Substituting (2.8) into (2.5) yields[
C1

k1

− k2k
2
3

k2
1

+ k1

]
u′ − 3k2k3

k1

uu′ − 3k2

2
u2u′ + k2

1k2u
′′′ = 0, (2.9)

which can be rewritten as

u′′′ − 3

2k2
1

u2u′ − 3k3

k3
1

uu′ +
1

k2k2
1

[
C1

k1

− k2k
2
3

k2
1

+ k1

]
u′ = 0, (2.10)
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Equation (2.10) can be integrated with respect toξ directly to yield

u′′ − a1u + a2u
2 − a3u

3 = A. (2.11)

in whichA is an integration constant to be determined and

a1 =
1

k2k2
1

[
k2k

2
3

k2
1

− C1

k1

− k1

]
, (2.12)

a2 = −3k3

k3
1

, (2.13)

a3 =
3

2k2
1

. (2.14)

In order to construct both bright and dark solitary wave solutions, we adopt the follow-
ing form of solution ansatz

u(ξ) = β + λ tanh (ηξ) + ρsech(ηξ) , (2.15)

whereη, λ, β andρ are nonzero coefficients which will be determined as a function of
the dependent model coefficients.
In the limit β = λ = 0, we obtain bright solitary wave solutions, but whenρ =
0 the solution (2.15) exactly transform to dark-type solutions. The presence of the
parametersβ, λ andρ permits to the ansatz (2.15) to describe the features of both
bright and dark solitary waves.
Substituting (2.15) into (2.11) and collecting coefficients of sechkµξ tanhm µξ with
k = 0, 1, 2, 3 and m = 0, 1, then setting each coefficients to zero, we obtain the
following equations:

−a1β + a2

(
λ2 + β2

)
− a3β

(
3λ2 + β2

)
− A = 0, (2.16)

ρ
{
η2 − a1 + 2βa2 − 3a3

(
λ2 + β2

)}
= 0, (2.17)

a2

(
ρ2 − λ2

)
− 3βa3

(
ρ2 − λ2

)
= 0, (2.18)

−2ρη2 − a3ρ
(
ρ2 − 3λ2

)
= 0, (2.19)

2a2ρλ− 6a3βλρ = 0, (2.20)

−2λη2 − a3λ
(
3ρ2 − λ2

)
= 0, (2.21)

−a1λ + 2βλa2 − a3λ
(
3β2 + λ2

)
= 0 . (2.22)

From Eq. (2.20) or (2.22), one obtains

β =
a2

3a3

. (2.23)

From Eqs. (2.21) and (2.23), one finds

η2 = −a3 (ρ2 − 3λ2)

2
and η2 = −a3 (3ρ2 − λ2)

2
, (2.24)
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It follows directly that
ρ2 = −λ2. (2.25)

From Eq. (2.19) and using (2.25), one gets

λ =

√
3 (a2

2 − 3a1a3)

3a3

, (2.26)

Consequently, we find from Eqs. (2.25) and (2.26) that

ρ = ±i

√
3 (a2

2 − 3a1a3)

3a3

, (2.27)

wherei is the imaginary unit. By inserting Eq. (2.26) into Eq. (2.24), one obtains

η =

√
2 (a2

2 − 3a1a3)

3a3

, (2.28)

Additionally, we find after inserting (2.23) and (2.26) into (2.16) that

A =
a2 (2a2

2 − 9a1a3)

27a2
3

. (2.29)

By substituting Eqs. (2.23)-(2.28) into Eq. (2.15), one obtains the following solutions:

u(ξ) =
a2

3a3

+

√
3 (a2

2 − 3a1a3)

3a3

tanh

√
2 (a2

2 − 3a1a3)

3a3

ξ


±i

√
3 (a2

2 − 3a1a3)

3a3

sech

√
2 (a2

2 − 3a1a3)

3a3

ξ

 , (2.30)

Substituting Eq. (2.30) into Eq. (2.8) gives

v (ξ) =
C1

k2
1

− k2k3

k2
1

 a2

3a3

+

√
3 (a2

2 − 3a1a3)

3a3

tanh

√
2 (a2

2 − 3a1a3)

3a3

ξ


±i

√
3 (a2

2 − 3a1a3)

3a3

sech

√
2 (a2

2 − 3a1a3)

3a3

ξ


− k2

2k1

 a2

3a3

+

√
3 (a2

2 − 3a1a3)

3a3

tanh

√
2 (a2

2 − 3a1a3)

3a3

ξ


±i

√
3 (a2

2 − 3a1a3)

3a3

sech

√
2 (a2

2 − 3a1a3)

3a3

ξ


2

(2.31)

Thus, the solutions (2.30) and (2.31) are the complexiton solutions for the (2+1)-
dimensional dispersive long wave equations (2.1) and (2.2) which exist provided that
a3 (a2

2 − 3a1a3) > 0 as seen from (28). In these solutions,ξ = k1x + k2y + k3t + ξo

with k1, k2, k3 andξo are arbitrary nonzero constants. It is remarkable that when the
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variableξ approaches infinity, the solitary wave solutions (2.30) and (2.31) do not
approach zero. However, in the opposite case where

a3

(
a2

2 − 3a1a3

)
< 0, (2.32)

the complexiton solutions respectively transforms to complex singular periodic solu-
tions as seen below.

u(ξ) =
a2

3a3

+

√
3 (a2

2 − 3a1a3)

3a3

tan

√
2 (a2

2 − 3a1a3)

3a3

ξ


±i

√
3 (a2

2 − 3a1a3)

3a3

sec

√
2 (a2

2 − 3a1a3)

3a3

ξ

 (2.33)

and

v (ξ) =
C1

k2
1

− k2k3

k2
1

 a2

3a3

+

√
3 (a2

2 − 3a1a3)

3a3

tan

√
2 (a2

2 − 3a1a3)

3a3

ξ


±i

√
3 (a2

2 − 3a1a3)

3a3

sec

√
2 (a2

2 − 3a1a3)

3a3

ξ


− k2

2k1

 a2

3a3

+

√
3 (a2

2 − 3a1a3)

3a3

tan

√
2 (a2

2 − 3a1a3)

3a3

ξ


±i

√
3 (a2

2 − 3a1a3)

3a3

sec

√
2 (a2

2 − 3a1a3)

3a3

ξ


2

(2.34)

2.2. Power Law Nonlinearity. In this section the two-dimensional generalization of
the regular dispersive long wave equations with power law nonlinearity and perturba-
tion terms will be studied. A problem of our interest consists in solving the following
family of the (2+1)-dimensional dispersive long wave equations:

uyt + avxx + b
(
u2n

)
xy

= ku + duv, (2.35)

vt + c (uv + u + uxy)x = 0, (2.36)

wherea, b, c, d andk are nonzero real constants, while the parametern indicates the
power law nonlinearity parameter. On settinga = c = n = 1, k = d = 0 andb = 1/2,
the system of coupled equations (2.35) and (2.36) reduces to the model equations (2.1)-
(2.2). Here in (2.35), the first term is the evolution term, while the second and third
terms respectively represent the dispersion and the power law nonlinearity terms. The
first perturbation term on the right-hand side of Eq. (2.35) is the linear damping term,
while the second term represents the nonlinear term.
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In order to obtain the bright soliton solutions to (2.35) and (2.36), the solitary wave
ansatz is assumed as [3-7]

u(x, y, t) =
A1

coshp1 τ
(2.37)

and

v(x, y, t) =
A2

coshp2 τ
(2.38)

where
τ = B1x + B2y − vt, (2.39)

Here, in (2.37)-(2.39),A1 andA2 are the amplitudes of theu-soliton andv-soliton
respectively,v represents the velocity of the solitons, whileB1 andB2 are the inverse
widths in thex-direction and they-direction, respectively. The exponentsp1 andp2

are unknown at this point and their values will be determined as a function ofn. Thus
from (2.37) and (2.38), we obtain

uyt = −p2
1A1B2v

coshp1 τ
+

p1(p1 + 1)A1B2v

coshp1+2 τ
(2.40)

vxx =
p2

2A2B
2
1

coshp2 τ
− p2(p2 + 1)A2B

2
1

coshp2+2 τ
(2.41)

(
u2n

)
xy

=
4n2p2

1A
2n
1 B1B2

cosh2np1 τ
− 2np1(2np1 + 1)A2n

1 B1B2

cosh2(np1+1) τ
(2.42)

vt =
p2vA2 tanh τ

coshp2 τ
(2.43)

(uv + u + uxy)x = −A1A2 (p1 + p2) B1 tanh τ

coshp1+p2 τ
− p1A1B1 (p2

1B1B2 + 1) tanh τ

coshp1 τ

+
p1(p1 + 1)(p1 + 2)A1B

2
1B2 tanh τ

coshp1+2 τ
(2.44)

Substituting (2.40)-(2.44) into (2.35) and (2.36) respectively yields

−p2
1A1B2v

coshp1 τ
+

p1(p1 + 1)A1B2v

coshp1+2 τ
+

ap2
2A2B

2
1

coshp2 τ
− ap2(p2 + 1)A2B

2
1

coshp2+2 τ

+
4bn2p2

1A
2n
1 B1B2

cosh2np1 τ
− 2bnp1(2np1 + 1)A2n

1 B1B2

cosh2(np1+1) τ
=

kA1

coshp1 τ
+

dA1A2

coshp1+p2 τ
,

(2.45)

and
p2vA2 tanh τ

coshp2 τ
− cA1A2 (p1 + p2) B1 tanh τ

coshp1+p2 τ
− cp1A1B1 (p2

1B1B2 + 1) tanh τ

coshp1 τ

+
cp1(p1 + 1)(p1 + 2)A1B

2
1B2 tanh τ

coshp1+2 τ
= 0, (2.46)

From (2.45), equating the exponentsp1 + 2 andp1 + p2 gives

p1 + 2 = p1 + p2 (2.47)

so that
p2 = 2 (2.48)
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Now from (2.46), equating the exponents2 (np1 + 1) andp2 + 2 gives

2 (np1 + 1) = p2 + 2 (2.49)

and therefore

p1 =
1

n
(2.50)

which is also obtained by equating the exponents2np1 andp2 in (2.45). Again from
(2.45), setting the coefficients of the linearly independent functions1/ coshp1+j τ to
zero, wherej = 0, 2, gives

v = −n2k

B2

(2.51)

v =
n2dA2

(n + 1)B2

(2.52)

and
aA2B1 + bA2n

1 B2 = 0 (2.53)

Equating the two values ofv from (2.53) and (2.54) leads to the following expression
for the amplitudeA2:

A2 = −k(n + 1)

d
(2.54)

Next, from (2.46), setting the coefficients of the linearly independent functions
tanh τ/ coshp1+j τ to zero, wherej = 0, 2, gives

v =
cA1B1 (B1B2 + n2)

2A2n3
(2.55)

and

A2 =
(n + 1)B1B2

n2
(2.56)

Now, substituting (2.56) into (2.53) gives the following expression for the amplitude
A1:

A1 =

[
−a(n + 1)B2

1

bn2

] 1
2n

(2.57)

which shows that theu-soliton will exists for

ab < 0 (2.58)

if n is an even integer. However, ifn is an odd integer there is no such restriction but
the soliton will be pointing downwards.
Hence, finally, the 1-soliton solutions of the the (2+1) dimensional dispersive long
wave equations are given by

u(x, y, t) =
A1

cosh
1
n [B1x + B2y − vt]

(2.59)

and

v(x, y, t) =
A2

cosh2[B1x + B2y − vt]
(2.60)
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where the amplitudesA1 andA2 are given by the expressions (2.57) and (2.56) re-
spectively, the velocity of the solitons is given by (2.51) or (2.52) or (2.55), while the
inverse widthsB1 andB2 are connected by (2.53).

3. CONCLUSIONS

This paper studied the (2+1)-dimensional dispersive long wave equations. The trav-
eling wave hypothesis approach, coupled with ansatz method was used to obtain the
complexiton solution of this equation. Subsequently, this equation was generalized to
power law nonlinearity where the pure ansatz approach was applied to retrieve solitary
wave solutions together with the technical conditions, also known as constraints, for
the existence of such solitary waves. These results are going to be extremely useful in
carrying out further studies in this area. For example, later on the cnoidal wave solu-
tions will be obtained along with the numerical analysis of these solitary waves. The
time-dependent coefficients, both deterministic and stochastic, will be later added and
the solitary wave solutions will be obtained in those cases as well. Those results will
be reported in future.
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