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Abstract:  

In this work quantitative structure activity relationship (QSAR) methodology was applied for modeling and 

prediction of cellular response to polymers that have been designed for tissue engineering. After calculation and 

screening of molecular descriptors, linear and nonlinear models were developed by using multiple linear 

regressions (MLR) and artificial neural network (ANN) methods. The root mean square error (RMSE) of these 

models were RMSEMLR=12.6 and RMSEANN=10.6. Robustness and  reliability of  the developed MLR and 

ANN models were evaluated by using the leave-one-out and leave many out cross-validation methods, which 

produces the statistics of Q2
MLR=0.74 and Q2

ANN=0.81. Moreover, the chemical applicability domains of these 

models were determined via leverage approach. The results of these tests indicate the suitability of developed 

models.  Comparison of statistical parameters of MLR and ANN models indicate the suitability of non-linear 

over linear model. The results of this study revealed the high applicability of QSAR approach in prediction of 

cellular response to the polymeric biomaterials. 
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1. Introduction 

The term of "biomaterial" describes a material 

intended for use in a medical device or implant. 

These materials are one of the cornerstones of 

tissue engineering that have been used for years, 

but recently their degree of perfection has increased 

significantly [1]. Biomaterials made today are 

routinely information rich and incorporate 

biologically active components derived from nature 

[2]. One of the most important biomaterials are 

polymeric compounds. These compounds can be 

used with various shapes, at reasonable cost and 

with desirable mechanical and physical properties 
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[3]. A major recent development in this field is the 

design of biomaterials for tissue engineering 

matrices to achieve specific biologic effects on 

cells, which are new ways to analyze the human 

body's response to materials [4-9]. 

The complexity of living cells and their interactions 

with biomaterials has been a conceptual as well as 

a practical barrier to the use of advanced discovery 

tools in designing of new biomaterials [10]. In this 

way, computational methods that can predict the 

cellular response to implanted biomaterials would 

be invaluable in the design of new medical devices, 

whose functions depend on controlling cell–

material interactions at the device surface [11]. 

Among theoretical methods, quantitative structure 

activity relationships (QSAR) approaches have 

been successfully established to predict the 

properties/activities of chemicals from their 

structural features. In this method the molecular 

structural descriptors of chemicals are 

quantitatively correlated to their biological 

activities [12-15]. These studies consist of two 

main stages; first, the chemical compounds are 

translated into a computer readable form, then the 

quantitative correlation between chemical structural 

features (molecular descriptors) and their activities 

can be established by using some feature mapping 

techniques such as: multiple linear regression 

(MLR), artificial neural network (ANN) and 

support vector machine (SVM) [16]. 

There are some reports about QSAR prediction of 

bio-responses to polymeric biomaterials [17-26]. 

For example, J.R. Smith et al. proposed a surrogate 

(semi empirical) model for prediction of protein 

adsorption onto the surfaces of biodegradable 

polymers that have been designed for tissue 

engineering applications by using an artificial 

neural network [19].The mean value of the 

coefficient of multiple correlation (R2) and the 

average root-mean-square (relative) error in 

prediction for the validation data sets of their model 

was 0.54±0.12 and 38%, respectively. A.V. 

Gubskaya et al. were used low energy 

conformations derived descriptors from molecular 

dynamics simulations for 45 representatives of 

polyarylates in an improved QSAR model instead 

of simplistic two-dimensional representations of 

polymer structures [5].The significance of the 

newly developed 3D model is that it allows high 

accuracy prediction of fibrinogen adsorption 

without the need to experimentally-derived 

descriptors and it has better predictive quality than 

the original 2D surrogate model due to utilization 

of realistic polymer representations. In another 

work, a subset of 79 polymers that taken from a 

representative sub-library of 2000 

polymethacrylates was used by V. Kholodovych et 

al. to build QSAR-based polynomial neural 

network models, which can used to predict cell 

attachment, cell growth, and fibrinogen adsorption 

on polymer surface [7].The resulting models gives 

good prediction statistics and allows to use on 

much larger set of poly methacrylates. Moreover, J. 

Ghoshet al. was examined the capabilities of QSAR 

modeling to predict specific biological responses of 

thin films of different poly methacrylates [26]. 

Based on the experimental results of these 

polymers, separate models were built for homo-, 

co-, and ter-polymers in the library, which gives 

good correlation between experimental and 

predicted values of specific biological responses. 

Also, Kholodovych et al. was used QSAR 

methodology to predict cell responses to a diverse 

set of 62 tyrosine derived biodegradable polymers, 

by using partial least squares (PLS) techniques 

[27].Their established five principle components 

(PCs) model gives the statistical parameters of 

R2=0.62 and Q2=0.56. The main aim of the present 

work is developing of some QSAR models for the 

above data set by computing new molecular 
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structural descriptors and using linear and non-

linear feature mapping techniques to developing 

new QSAR models. 

 

2. Methodology 

2.1. Data Set 

The values of response of fetal rat lung fibroblasts  

(FRLF) to 62 polymeric substrates were reported 

by Kholodovych  et al. that were selected as data 

set (Table 1) [27].  

They have used combinatorial chemistry 

techniques to prepare a series of structurally related 

polyarylates derived from monomers consisting of 

a tyrosine-derived diphenol and a diacid (Fig. 1). 

 

 

Table. 1:List of 62 polyarylates used to build the QSAR model, together with corresponding experimental and 

ANN and MLR predicted values of FRLF NMA 

No. Diphenol Diacid FRLF NMA 

(%TCPS) 

𝐅𝐑𝐋𝐅 𝐍𝐌𝐀𝑨𝑵𝑵 𝐅𝐑𝐋𝐅 𝐍𝐌𝐀𝑴𝑳𝑹 

1 DTB Adipate 32.29 31.55 42.23 
2 DTB Diglycolate 75.89 73.22 82.43 
3 DTB Dioxaoctanedioate 82.81 73.73 63.26 
4 DTB Methyl adipate 35.12 33.25 41.22 
5 DTB Sebacate 58.05 57.89 49.23 
6 DTB Suberate 76.34 76.47 64.21 
7 P

a DTB Succinate 75.82 79.53 73.26 
8 DTBn Adipate 52.48 52.54 31.93 
9 DTBn Diglycolate 73.77 73.84 75.94 
10 DTBn Dioxaoctanedioate 69.93 69.63 84.89 
11 DTBn Glutarate 71.49 70.54 64.14 
12 DTBn Methyl adipate 32.01 33.42 45.60 
13 DTBn Sebacate 66.53 60.24 60.12 
14 DTBn Suberate 67.24 72.73 68.95 
15 DTBn Succinate 77.77 78.14 82.59 
16 DTD Adipate 2.00 1.02 7.48 
17 DTD Diglycolate 67.65 73.15 61.16 
18P

a DTD Dioxaoctanedioate 66.31 56.47 48.43 
19 DTD Glutarate 18.83 16.68 24.54 
20 DTD Methyl adipate 20.83 20.74 16.70 
21 DTD Sebacate 7.92 12.78 18.35 
22P

b DTD Suberate 31.48 12.55 19.03 
23 DTE Adipate 75.66 73.54 59.38 
24 DTE Diglycolate 82 81.49 80.15 
25 DTE Dioxaoctanedioate 77.69 77.79 86.47 
26 DTE Glutarate 78.47 78.98 82.64 
27 DTE Methyl adipate 38.55 39.15 45.34 
28P

b DTE Sebacate 68.4 84.87 71.74 
29 DTE Suberate 69.51 73.21 84.23 
30 DTE Succinate 97.59 97.26 86.32 
31 DTH Adipate 16.48 16.38 30.98 
32 DTH Diglycolate 69.5 69.51 70.17 
33 DTH Dioxaoctanedioate 59.09 57.60 67.66 
34P

b DTH Glutarate 52.8 48.16 52.95 
35 DTH Methyl adipate 25.48 26.01 20.11 
36 DTH Sebacate 50.62 51.59 49.09 
37 DTH Suberate 63.64 63.47 51.34 
38P

* DTH Succinate 30.18 - - 
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39 DTiP Adipate 62.36 63.34 58.09 
40 DTiP Diglycolate 81.44 80.92 88.59 
41b DTiP Dioxaoctanedioate 70.89 78.39 93.38 
42 DTiP Glutarate 79.79 79.84 73.86 
43 DTiP Methyl adipate 85.01 85.20 65.23 
44 DTiP Sebacate 78.30 78.34 76.07 
45 DTiP Suberate 70.44 71.08 79.56 
46 DTiP Succinate 77.07 74.50 87.33 
47b DTM Adipate 86.22 95.47 71.02 
48 DTM Diglycolate 88.33 91.53 93.70 
49* DTM Dioxaoctanedioate 84.61 - - 
50 DTM Glutarate 94.60 95.10 96.26 
51 DTM Methyl adipate 78.00 77.86 81.87 
52 DTM Sebacate 87.85 87.41 85.57 
53a DTM Suberate 80.71 91.13 104.61 
54 DTM Succinate 114.66 114.86 97.90 
55 DTO Adipate 4.80 4.55 9.95 
56 DTO Diglycolate 66.69 66.93 70.12 
57 DTO Dioxaoctanedioate 71.67 70.62 59.33 
58 DTO Glutarate 43.18 32.80 37.49 
59a DTO Methyl adipate 40.88 53.87 19.66 
60a DTO Sebacate 17.58 31.36 34.11 
61 DTO Suberate 47.38 46.09 41.72 
62 DTO Succinate 25.57 41.83 44.53 
In the above table a and b represent the internal and external test sets, respectively and *refers to the outliers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Library of 62 polyarylates obtained from 14 tyrosine-derived diphenols and eight diacids. Polymers 

are strictly alternating copolymers consisting of a diacid (DA) and a diphenol (DP) component varied at Y and 

R, respectively. The number of methyl groups in the DP component is also variable. 
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In the combinatorial approach, copolymers are 

synthesized from a set of x structural variations of 

‘A’ and y structural variations of ‘B’. The ‘A’ 

monomer template in the polyarylate library is the 

desaminotyrosyl–tyrosine alkylesters (DTR) 

diphenol while the ‘B’ monomer template is a 

dicarboxylic acid (Fig. 1) [28-29]. Cellular 

response to each polyarylate sample was then 

quantified as ‘normalized metabolic activity’ 

(NMA), which was its average measured metabolic 

activity given as a percentage of the average 

measured value for the separate tissue culture 

polystyrene (TCPS) wells [27]. 

Compounds in data set were sorted according to 

their FRLF NMA values, then the training (50), 

internal (5) and external (5) test sets were chosen 

from this list by desired distances from each other. 

The training set and internal test set participated in 

the developing of the ANN model and adjusting its 

parameters, while the external test set was used to 

evaluate the prediction power of the obtained 

model. In the case of MLR model, the training set 

was used to model generation and the internal and 

external test sets were considered as a test set, 

which was used in evaluation of MLR model. 

2.2 Descriptors; generation and screening 

Molecular descriptors are the simple mathematical 

representation of a molecule and are used to encode 

significant structural features of molecules. In order 

to calculate descriptors, the repeating structural unit 

of each co-polymer was drawn by Hyperchem 

program (ver. 7) [30]. Then, the optimization of 

these structures was done with the semi empirical 

AM1 method. The obtained Hyperchem output 

files were used by Dragon program [31]to calculate 

molecular descriptors.  

After calculation of the molecular descriptors, 

those that stayed constant for all molecules were 

eliminated and pairs of variables with a correlation 

coefficient greater than 0.9 were classified as inter-

correlated and one in each correlated pair was 

deleted. The remaining 187 descriptors were used 

to generate the QSAR models. 

 In the next step, the method of stepwise multiple 

linear regression was used for selection of the most 

relevant descriptors and MLR model construction 

[32]. To find the optimum number of descriptors, 

the influence of the number of the descriptors on 

the correlation coefficients (R2) of MLR models 

were calculated and monitored in Fig. 2.  

 

 

 

 

 

 

  

 

 

 

 

 

Figure 2. The variations of R2 against the number of descriptors in the MLR model. 
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Table 2. Specifications of multiple linear regression model 

P-

value 

SE Coefficient Notation Descriptor 

0.000 ±91.489 200.130 MATS7e Moran autocorrelation –lag7 / weighted by atomic Sanderson 

electronegativities 

0.021 ±34.382 -206.385 Mor08u 3D-MoRSE– signal 08 / unweighted 

0.000 ±2.462 5.883 H0m H autocorrelation of lag 0 / weighted by atomic masses 

0.001 ±17.701 147.196 RDF030m Radial Distribution Function – 3.0 /weighted by atomic masses 

0.008 ±1.865 -6.994 Ram Ramification index 

0.000 ±4.043 11.330 VEA1 Eigenvector coefficient sum from adjacency matrix 

0.034 ±19.659 -92.062  Constant 

 

 

As it is shown in this Figure, after addition of six 

descriptors no significant improvement in the RP

2
P 

was observed, therefore to prevent the over 

parameterization six descriptors were eventually 

selected.  

The specifications of the MLR model that was 

developed by these six descriptors were shown  

in Table 2. Moreover the correlation matrix 

between these descriptors is shown in Table 3. As 

can be seen in this table there is not any high 

correlation between selected descriptors. 

2.3 Diversity test 

One of the most critical aspects in splitting of the 

data set is to warrant enough molecular diversity 

for it. In this study, diversity analysis was 

performed on the data set to make sure that the 

structures of the training, internal and external test 

sets can represent those of the whole ones [33]. 

 

 

Table 3. Correlation matrix between selected descriptors 

MATS7e Mor08u H0m RDF030m Ram VEA1  

 1 VEA1 

   1 0.514 Ram 

   1 -0.130 0.047 RDF030m 

  1 0.013 0.202 -0.079 H0m 

 1 -0.574 0.202 -0.197 -0.164 Mor08u 

1 0.345 -0.271 0.046 0.356 -0.056 MATS7e 
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In this way, the mean distance of one chemical to 

the remaining ones was computed from descriptor 

space matrix as follows: 

dij =  �∑ �xij − xjk�
2m

k=1  

�̅� RlR = 
∑ 𝑑𝑖𝑗
𝑛
𝑖=1
𝑛−1

i = 1, 2,…, n  

where  𝑑𝑖𝑗  is a distance score for two different 

compounds and 𝑥𝑖𝑘  and 𝑥𝑗𝑘  are compounds 

descriptors. Then the calculated mean distances 

were normalized within the interval 0 to1, and 

plotted against the values of dependent variable 

(see Fig. 3). Inspection to this figure indicates that 

the structures of the compounds are diverse for 

both training and test sets. It warrants model 

stability and that the test set is suitable to assess the 

predictive performance of the developed models. 

 

 

 
Figure 3. Scatter plot of normalized mean distance of samples versus experimental data. 

 

2.4 Nonlinear model 

Artificial neural networks are biologically inspired 

computer programs designed to simulate the way in 

which the human brain processes information [34]. 

ANNs are rapidly becoming the method of choice 

for structure-activity and structure-property 

relationship studies due to their capability to 

mapping complex patterns. In this work, in order to 

check any nonlinear relationships between 

structural descriptors and experimental values of 

FRLF NMA, multilayer perceptron neural network 

(MLP) [35] was applied by using STATISTICA 

(release. 7.1) software [36]. This network consisted 

of a layer of input units, a layer of hidden units and 

a layer of output unit. The node in each layer is 

connected to the nodes of the next layer by weights. 

The values of weights were optimized by 

Levenberg-Marquardt (LM) algorithm during 

training epochs. Then the trained network was used 

to calculate the FRLF NMA values of external test 

set as well as training and internal test sets. 

 

3. Results and discussion 

3.1. Linear modeling 

In this work, quantitative relationships between 

FRLF NMA of some polymeric biomaterials and 

their structural descriptors were investigated by 

using linear and non-linear approaches. The best 

(1) 

(2) 
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MLR equation with DRAGON calculated 

molecular descriptors using the FRLF NMA as the 

dependent variable was derived by SPSS (ver. 17) 

software [37]. 

The specifications of the selected MLR model are 

shown in Table 2. As can be seen in this table six 

descriptors appeared in the models, which can 

encode different structural features of molecule. 

Among them MATS7e, is the lag 7 of Moran 

autocorrelation type descriptors, that was weighted 

by atomic Sanderson electronegativities and can 

encode electro-topological aspects of a 

molecule.H0m is belonged to GETAWAY 

descriptors series, which have shown great 

potential as powerful variables in QSAR modeling 

of different biological activities because they can 

encode information about molecular shape, size 

and atom distribution [38].  

RDF030m obtained from radial basis functions 

centered on different interatomic distances (from 

0.5A to 15.5A). These descriptors are based on the 

distance distribution in the geometrical 

representation of a molecule and constitute a radial 

distribution function code (RDF code) that shows 

certain characteristics in common with the 3D-

MORSE (molecule representation of structures 

based on electron diffraction) code. Formally, the 

radial distribution function of an ensemble of atoms 

can be interpreted as the probability distribution of 

finding an atom in a spherical volume of radius 

R.Mor08u is a 3D-MoRSE type that can be 

represent descriptor.  

It is a representation of the 3D structure of a 

molecule and encodes structural features such as 

mass and amount of branching. The last descriptors 

are Ram and VEA1descriptors from topological 

series, which obtained from molecular graph 

(usually H-depleted) matrices and can account the 

molecular symmetry in terms of atom topological 

uniqueness.  

These six descriptors can encode features of 

molecular structures such as size, shape and charge 

distribution that can affect the biological activities 

of the chemicals. Further explanations and meaning 

of these molecular descriptors, and their calculation 

procedures, can be found in the Handbook of 

molecular descriptors [39].The calculated FRLF 

NMA values by this model were shown in Table 1. 

The root mean square errors (RMSE) of this 

calculation were 12.6 and 15.9 for training and test 

sets, respectively. 

 

3.2 Nonlinear modeling 

In order to investigate any nonlinear relationship 

between selected molecular descriptors and FRLF 

NMA, a three-layer network with an exponential 

transfer function in the hidden layer and a logistic 

transfer function in the output layer was designed. 

The number of neurons in the hidden layer was 

optimized based on the minimizing of mean square 

errors. Then, the network was trained by 

Levenberg–Marquardt algorithm. In the next step, 

the developed 6-5-1 network was used to predict 

the cellular response for external test set as well as 

training and internal test sets.  

The calculated values of FRLF NMA are shown in 

Table 1. The RMSE values of this estimation were 

10.6, 12.6 and 10.7 for training, internal and 

external test sets, respectively. The plot of the 

predicted values of cellular response against the 

experimental values is shown in Fig 4. 

Inspection to this figure indicates good correlation 

between experimental and calculated values of 

FRLF NMA (R2
train=0.98, R2

int=0.86 and 

R2
ext=0.96). The residuals of predicted values are 

plotted against the experimental values in Fig 5. 

Random propagation of residuals over zero line 

indicates that there is no systematic error in 

developed model.  
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Figure 4. Calculated versus experimental activity values using ANN model. 

 

 
Figure 5. The plot of prediction residuals versus experimental values of FRLF NMA for all molecules in the 

data set. 

 

Other statistical parameters of ANN and MLR 

models are shown in Table 4. Comparison between 

these values revealed that the ANN model produces 

better statistical results in terms of R2, RMSE and P 

value over the MLR model, which strongly 

suggested a nonlinear relationship between the 

selected descriptors and FRLF NMA of these 

compounds. In order to evaluate the robustness and 

predictive power of models, the leave-six-out 

cross-validation test was performed and the values 

of the cross-validation correlation coefficient (Q2) 

and standard deviation based on predicted residual 

sum of square (SPRESS) were calculated from the 

following equation: 

𝑄2 = 1 − ∑ (𝑦𝑖−𝑦�𝑙)2
𝑛
𝑖=1
∑ (𝑦𝑖−𝑦�)2𝑛
𝑖=1

                              (3) 

SPRESS = �∑ (yi−yl� )2n
i=1
n−k−1

                           (4) 

In the above expressions y�is the mean of dependent 

variable, n is the number of observation and k is the 

number of independent variable.Q P

2
Pindicate the 

relative predictive ability of a model and SPRESS 

is the standardized predicted error sum of squares, 

which is a standard index to measure the accuracy 

of a modeling method. The obtained QP

2
P and 
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SPRESS were 0.81 and 11.4, respectively, that 

indicated the robustness of developed ANN model. 

Descriptors that were used in this model are 

belonging to topological and electronic categories. 

Sensitivity analysis approach is used to rank the 

general importance of the descriptors that appear in 

the model.  

This approach is called sequential zeroing of 

weights (SZWs). The SZW method [40] estimates 

the degradation in output variables of a trained 

neural network when the weights connecting the ith 

input variable to the nodes of the hidden layer are 

set to zero. In this way, the contribution of that 

variable to the network response is excluded. The 

SZW method can only be implemented after a 

neural network is trained. Therefore, SZW results 

have to be validated based on the assumption that 

the ANN model is a sufficiently accurate model. 

According to this method, the measure that is 

calculated in order to reveal the importance of the 

ith input variable is the difference between the root 

mean square error (RMSE) of the complete 

network predictions and the RMSE obtained when 

the ith variable is excluded from the trained 

network (RMSEi), both being calculated on the 

same data set according to the following equation: 

 

Rmdiffi = RMSEi – RMSE               (5) 

 

Generally, the values of Rmdiffi are greater than 

zero. The variable with the greater importance is 

the one that leads to a greater value of Rmdiffi. 

According to the results of sensitivity analysis on 

ANN model, the importance order of descriptors 

was MATS7e > RAM > VEA1 >H0M >MOR08U 

> RDF030M. Appearing of these descriptors to the 

model indicate the effects of electronic and steric 

interaction on cellular responses to chemicals. 

 

Table 4. Statistical parameters of ANN and MLR models 

Model Training Internal test External test Validation 𝑄2 SPRESS 

R2 RMSE F R2 RMSE F R2 RMSE F R2 RMSE F 

MLR 0.85 12.6 42.1   0.75 15.9 2.048 0.74 13.4 

ANN 0.98 10.6 1231.0 0.86 12.6 19.3 0.96 10.7 75.1  0.81 11.4 

 

 

3.3 Applicability domain analysis 

The domain of applicability is an important concept 

in quantitative structure activity relationships that 

allows one to estimate the uncertainty in the 

prediction of a particular molecule based on how 

similar it is to the compounds used to build the 

model [40].  

A simple measure of a chemical being too far from 

the applicability domain of the model is its 

leverageℎ𝑖, which is defined as: 

 

hi = xiT(XTX)−1xi(i = 1, … , n)                      (6) 
 

where xRiR is the descriptor row-vector of the query 

compound and X is the n× k-1 matrix of k model 

descriptor values for n training set compounds. The 

superscript T refers to the transpose of the 

matrix/vector. The warning leverage hP

*
P is 

calculated as follows:  

 

h*=3p/n                                                                 (7) 

 

where p is the number of model variable plus one, 

and n is the number of training compounds. The 

observation that a chemical has a leverage value 

greater than the warning leverage indicates that the 
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chemical falls outside the applicability domain. To 

visualize the applicability domain of a QSPR 

model, the standardized residuals versus leverage 

(Hat diagonal) values was plotted (Fig. 6).As it can 

be seen from this figure, all predictions were 

reliable except the number 38 and 49 in training 

set. The anomalous behavior of these compounds 

could be due to one of the following reasons: (1) 

incorrect experimental input data, (2) the 

descriptors selected do not capture some relevant 

structural features present in the molecule and 

absent in the others, (3) its biological mechanism is 

different from the remaining chemicals. 

 

 

 
Figure 6.The plot of standardized residuals versus hat values, with a warning leverage of h*=0.42. 

 

4. Conclusion 

Multiple linear regression and artificial neural 

network are used as feature mapping techniques for 

prediction of FRLF cell response from their 

molecular structural descriptors. The superiority of 

ANN over MLR model indicates the dominant of 

nonlinear relation between selected molecular 

descriptors of interested polymers and fibroblast 

cell responses. The results of this study revealed 

that quantitative structure-activity relationship 

approach has a high applicability for accurate 

prediction of cellular response surface to tyrosine 

derived biodegradable polymers. Moreover the 

result of this study indicate that computational 

strategies that have demonstrated success in the 

rational design of new therapeutics in 

pharmaceutical discovery can be employed to offer 

guidance and direction in the design, selection, and 

optimization of novel bio-relevant materials. 
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