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Abstract. In this paper we introduce the concept of α-commutator

which its definition is based on generalized conjugate classes. With

this notion, α-nilpotent groups, α-solvable groups, nilpotency and

solvability of groups related to the automorphism α are defined.

N (G) and S(G) are the set of all nilpotency classes and the set

of all solvability classes for the group G with respect to different

automorphisms of the group, respectively. If G is nilpotent or solv-

able with respect to the all its automorphisms, then is referred as

it absolute nilpotent or solvable group. Subsequently, N (G) and

S(G) are obtained for certain groups. This work is a study of the

nilpotency and solvability of the group G from the point of view

of the automorphism which the nilpotent and solvable groups have

been divided to smaller classes of the nilpotency and the solvability

with respect to its automorphisms.
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1. Introduction

Nilpotent and solvable groups in terms of the certain normal series of
subgroups are defined in [5]. This approach demonstrates that there
is a connection between nilpotent groups, solvable groups and commu-
tators. A solvable group is a group whose derived series terminates in
the trivial subgroup. Historically, the word solvable arose from Galois
theory and the proof of the general unsolvability of quintic equation.
Specifically, a polynomial equation is solvable by radicals if and only if
the corresponding Galois group is solvable. The idea of nilpotent groups
is motivated by the fact that all of them are solvable. In this paper, we
introduce the α-nilpotent and the α-solvable group and we try to verify
which properties of the ordinary nilpotent and solvable groups are valid
here. This work is organized in five sections. In the next section we
explain the concept of the α-commutator and its preliminary properties
which are useful in the text. The relative nilpotent groups with respect
to a certain automorphism are the subjects discussed in the third sec-
tion. In the fourth section, We will specify the set N (G) for dihedral,
quaternion, quasi-dihedral and modular p−group. In the last section,
some properties of α-solvable group are discussed and also the set S(G)
is gained for some groups. Throughout the paper, all notations and
terminologies are standard (for instance see [5]).

2. Preliminary results

Definition 2.1. Let G be a group and α ∈ Aut(G). For two elements
x, y ∈ G, we say x and y commute under the automorphism α whenever
yx = xyα. Moreover, x−1y−1xyα is called α-commutator of x, y and
denoted by [x, y]α.

It is clear that if α is the identity automorphism, then we have or-
dinary commutator. Furthermore, we nominate [x, y]α a α-commutator
because of the similar properties which it has in comparison to the usual
commutator as yx[x, y]α = xyα. So we can think of the α-commutator of
x and y as the ”difference” between yx and xyα. By the same method,
one can define a α-commutator of weight n as follows

[x1, x2, · · · , xn]α = [x1, [x2, · · · , xn]α]α.

By definition, we conclude the following identities for the α-commutator.

Proposition 2.2. Let G be a group. Then we have

(i) [x, x]α = [1, x]α = [x, α], where [x, α] = x−1xα. Moreover
[x, 1]α = 1.
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(ii) [x, y]α = [x, y][y, α], [x, y]αα = [xα, yα]α and [x, y−1]α = [x, y]
−(yα)−1

α .

(iii) [x, y]β
αβ

= [xβ, yβ]α, where αβ = β−1αβ.

(iv) [x, y1y2]α = [x, y2]α[x, y1]
yα2
α and [x1x2, y]α = [x1, y]x2α [x2, y

α].

(v) [[x, y−1]α, z]
yα
α = [x, y−1, z]y[zy, α].

Definition 2.3. Let G be a group and X1, X2 be two non-empty subsets
of G. We define α-commutator of X1 and X2 as follows

[X1, X2]α = 〈[x1, x2]α : x1 ∈ X1, x2 ∈ X2〉.

It is obvious that [X1, X2]α is a subgroup of G and [X1, X2]α is not
equal to [X2, X1]α in general.

Definition 2.4. Let α ∈ Aut(G). Consider the action ψ : G ×G → G
such that (x, g) 7→ g−1xgα. With this action G is partitioned to the
classes which are called generalized conjugacy classes or α-conjugacy
class. We denote a α-conjugacy class which contains x by xGα and it is
clear that,

xGα = {g−1xgα : g ∈ G}.

If |xGα | = 1, then α is an inner automorphism. Moreover, let us re-
call a subgroup CαG(x) = {y ∈ G : [x, y]α = 1} which satisfies |xGα | =
[G : CαG(x)] (see [1]). Alternatively, we can write x[x, y]α = y−1xyα,
so [x, y]α can also be viewed as the ”difference” between x and its α-
conjugate y−1xyα. It is interesting to know that the number of general-
ized conjugacy classes is the number of ordinary conjugacy classes which
are invariant under α and it is also equal to the number of irreducible
characters which are invariant under α (see [3, 4]). We define α-center
of the group G as

Zα(G) =
⋂
x∈G

CαG(x) = {y ∈ G : [x, y]α = 1 for all x ∈ G}.

One can deduce Zα(G) = Z(G) ∩ Fix(α), where Fix(α) = {g ∈ G :
gα = g}. Moreover, L(G) =

⋂
α∈Aut(G) Z

α(G), where L(G) is called the

absolute center of a group G (see [2]).

Definition 2.5. Let N be a normal subgroup of G and Nα = N .
Then we define (xN)α = xαN ; where α : G/N → G/N . It is triv-
ial [x1, x2, · · · , xn]α = [x1, x2, · · · , xn]αN .

3. Relative Nilpotency of Groups

In this section we introduce the nilpotent group with respect to the
fixed automorphism. Moreover, we obtain properties which are very
similar to the argument about ordinary nilpotent groups (see [5]). Thus
we omit some proofs.
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Definition 3.1. A α-central series of G is a normal series

{1} = G0 EG1 E · · ·EGn = G,

where Gαi = Gi and Gi+1/Gi ≤ Zα(G/Gi), 0 ≤ i ≤ n− 1.
If G has a α-central series, then G is α-nilpotent or we call G is

nilpotent with respect to α. In this situation the smallest length of
α-central series is called relative nilpotency class of the group.

If G is α-nilpotent of class cα, then it is nilpotent of class at most
cα. We define the set of all relative nilpotency class of the group with
respect to an automorphism of the group as N (G) = {cα : α ∈ Aut(G)}.
Moreover, if G is nilpotent with respect to a non-trivial automorphism,
then we call G is a non-trivially nilpotent.

Definition 3.2. We callG is an absolute nilpotent group if it is nilpotent
with respect to every automorphism of the group.

Definition 3.3. For the group G and α ∈ Aut(G). We define the
derived subgroup of G with respect to the automorphism α by

Γα2 (G) = 〈[x, y]α : x, y ∈ G〉.

Similarly, we have

Γα1 (G) = G, Γαn+1(G) = [G,Γαn(G)]α (n ≥ 1).

By induction on n, one can see Γαn+1(G) ⊆ Γαn(G) and Γαn(G) is invariant
under α.

Easily, we observe that Γαn(G)EG and the following series is a normal
series,

G = Γα1 (G)D Γα2 (G)D · · · .
Moreover, Γαn(G/N) = Γαn(G)N/N , where Nα = N .

Definition 3.4. Put Zα1 (G) = Zα(G). Clearly Zαi (G)EG, (Zαi (G))α =
Zαi (G) and

Zα(
G

Zαi−1(G)
) =

Zαi (G)

Zαi−1(G)
for i ∈ N.

For a group G, the normal series {1} = Zα0 (G)EZα1 (G)EZα2 (G)E · · ·
is called an upper central α-series and G = Γα1 (G) D Γα2 (G) D · · · is a
lower central α-series for G. In general, these two series will not stop,
but if so, we will prove that G is α-nilpotent and its converse is valid.
Thus we find equivalent definitions for a α-nilpotent group G.

Theorem 3.5. Suppose G is a group and α ∈ Aut(G). Then

(i) Zαn (G) = Zα
−1

n (G).
(ii) x ∈ Zαn (G) if and only if [g1, · · · , gn, x]α = 1 for all g1, g2, · · · , gn ∈

G.
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(iii) Zαn (G) ⊆ Zn(G).

Proof. (i) and (ii) is easy and for the third part use induction on n. �

An automorphism α of G is said to be central if α commutes with
every inner automorphism or equivalently α(g)g−1 ∈ Z(G) for all g ∈ G.

Theorem 3.6. Let α be a central automorphism. If Z(G) = Zα(G),
then Zαn (G) = Zn(G) for all n ≥ 2.

Proof. The proof follows by induction on n. �

Also for an inner automorphism α we have Zαn (G) = Zn(G) for all n.

Lemma 3.7. Suppose H and N are two subgroups of G. If N EG and
Nα = N , then [G,HN ]α ≤ [G,H]αN .

Proof. For h ∈ H, n ∈ N and g ∈ G we have

[g, hn]α = [g, h]α(h−1ghα)−1n−1(h−1ghα)nα.

Hence, the result is clear. �

Theorem 3.8. For a group G the following is equivalent,

(i) G is α-nilpotent.
(ii) There is an integer r such that Γαr (G) = 1.
(iii) There is an integer s such that Zαs (G) = G.

Proof. Suppose (i), we will prove (ii). the group G has a central α-series,

{1} = G0 EG1 E · · ·EGn.

Also Gi+1/Gi ≤ Zα(G/Gi), 0 ≤ i ≤ n − 1. By induction, it follows
Γαi+1(G) ≤ Gn−i. Thus, for i = n − 1 we have Γαn(G) ≤ G1. On the
other hand G1 ≤ Zα(G) and

Γαn+1(G) = [G,Γαn(G)]α ≤ [G,G1] = {1}.

Hence r = n+ 1.
Let us prove (iii) by assuming (ii). By induction and Lemma 3.7, it

can be readily observed that Γαr−i(G) ≤ Zαi (G), 0 ≤ i ≤ r − 1. Now for
i = r − 1 we conclude G = Γα1 (G) ≤ Zαr−1(G) and G = Zαr−1(G). Thus
we imply s = r − 1. Hence the assertion is clear. �

Theorem 3.9. Suppose α-nilpotent group G has upper and lower α-
series as follows

{1} = Zα0 (G)E Zα1 (G)E · · ·E Zαm(G) = G

G = Γα1 (G)D Γα2 (G)D · · ·D Γαn(G).

Then m = n is α-nilpotency class of G.
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Proof. Assume G has a α-central series of the least length c as follows,

{1} = G0 EG1 E · · ·EGc.

Since upper α-central series is a central series, we have c ≤ m. By
induction and Lemma 3.7, we deduce that Gi ≤ Zαi (G). Now for i = c
we have G = Gc ≤ Zαc (G). Thus c = m. Moreover, we observe that
Γαi (G) ≤ Zαm+1−i(G). If i = m + 1, then Γαm+1(G) ≤ Zα0 (G) = {1}.
Therefore m ≥ n which implies c = n. �

By third part of Proposition 2.2, it follows, if α and β are in the same
conjugacy class, then the nilpotency class of G with respect to α and β
are equal. The proof of the following theorems are obvious, so we omit
the demonstration.

Theorem 3.10. If G is an α-nilpotent group, NEG and Nα = N , then
N ∩ Zα(G) 6= 1.

Theorem 3.11. Let α ∈ Aut(G) and β ∈ Aut(H). Then

(i) Γα×βn (G×H) = Γαn(G)× Γβn(G),

(ii) Zα×βn (G×H) = Zαn (G)× Zβn (H),

(iii) Zαm( G
Zαn (G)) =

Zαm+n(G)

Zαn (G) ,

where (α× β)(g, h) = (α(g), β(h)) for all g ∈ G and h ∈ H.

Theorem 3.12. Let α ∈ Aut(G). Then the group G is α-nilpotent if
and only if G is direct product of Sylow p-subgroups which are nilpotent
with respect to α.

Proof. By Theorem 3.11, the assertion follows. �

There is a question here to ask whether or no we could imply three
subgroups lemma or the following result? Let G be a group and α ∈
Aut(G). Then

(i) [Γαi (G),Γαj (G)]α ≤ Γαi+j(G).

(ii) Γαi (Γαj (G)) ≤ Γαij(G).

(iii) If i ≥ j, then [Zαi (G),Γαj (G)]α ≤ Zαi+j(G).

Now, we conclude the following theorems for abelian groups.

Theorem 3.13. Let G be an abelian absolute nilpotent group. Then G
is a 2-group.

Proof. Consider the automorphism α(x) = x−1 and suppose that the
nilpotency class of G with respect to α is c. Therefore Zαi (G) = {x ∈
G : x2i = 1} and the assertion is clear. �
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Theorem 3.14. Let G be an abelian group. Then for all α ∈ Aut(G)

G

Zαn (G)
∼= Γαn+1(G).

Proof. By induction on n, we have [g1, g2, · · · , gn, g] = (α−ı)n(g), where
ı is identity automorphism. Thus Im(α − ı)n = Γαn+1(G) and Ker(α −
ı)n = Zαn (G) and the result is clear. �

By the above theorem, an abelian group G is α-nilpotent if and only
if (α − ı)n = 0 and (α − ı)n−1 6= 0. Moreover, for all abelian group G,
if G/Zαn (G) is finite, then Γαn+1(G) is finite. Now, we try to prove it in
general. In the following theorem we observe that this assertion is valid
for n = 1.

Theorem 3.15. Let G be a finite abelian group. Then there are |Zα(G)|
α-conjugacy classes of length |Γα2 (G)|.

Proof. x, y ∈ G are α−conjugate if and only if the following hold:

x = −g + y + gα

x− y = gα − g
x− y = (α− ı)(g)

x− y ∈ Im(α− ı) = Γα2 (G).

By the Theorem 3.15, the assertion follows. �

For instance, Z27 with automorphisms α : n 7→ 10n and β : n 7→ 4n
we have |Zα(G)| = 9 and |Zα(G)| = 3.
By Theorem 3.15, for every abelian group G, if G/Zαn (G) is finite, then
Γαn+1(G) is finite. There is a question here to ask whether or no we could
imply it, in general?

Theorem 3.16. Suppose G is a group. If G/Zα(G) is finite, then Γα2 (G)
is finite.

Proof. Assume |G/Zα(G)| = n. The function T : G → Zα(G) which
T (a) = an is a transfer homomorphism, for a ∈ G. Therefore, every
element of Ker(T) has finite order. Also T ([x, y]α) = [T (x), T (y)]α = 1
which implies Γα2 (G) ≤ Ker(T). Thus every element of Γα2 (G) is of finite
order. Furthermore Γα2 (G) is finitely generated. Since, if {x1, · · · , xn}
is the set of transversal of Zα(G) in G and u, v ∈ G, then u = z1xi
and v = z2xj where z1, z2 ∈ Zα(G) 1 ≤ i, j ≤ n. So we can write
[u, v]α = [xi, xj ]α. This fact conveys the Γα2 (G) is finitely generated. On
the other hand Γα2 (G)/Γα2 (G) ∩ Zα(G) is finite. By Schereir Theorem,
Γα2 (G)∩Zα(G) is finitely generated. Since Γα2 (G)∩Zα(G) is abelian and
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the order of each elements is finite, we conclude that Γα2 (G) ∩ Zα(G) is
finite. Hence the assertion is clear. �

4. Some Interesting Examples

Let us start this section by the following theorem.

Theorem 4.1. Suppose Zn is the cyclic group of order n and α the
automorphism with multiplication by u, where u is an invertible element
in Zn. Then Γαc+1(G) = (u−1)cG and Zαc (G) = {s ∈ G : (u−1)cs = 0}.

The above theorem implies that a cyclic group G is α-nilpotent of

class c if and only if (u−1)c
n≡ 0. By this fact, we can verify the relative

nilpotency of cyclic groups.

Example 4.2. In this example in each cases we find the nilpotency class
of the group with respect to the automorphism which is defined as in
the hypothesis of the Theorem 4.1

(i) For Z8 we have

u 1 3 5 7
c 1 3 2 3

Therefore, Z8 is absolute nilpotent group.
(ii) For the cyclic group of order 9, Z9 we conclude that

u 1 2 4 5 7 8
c 1 - 2 - 2 -

It is clear that Z9 is not absolute nilpotent.
(iii) Zp is nilpotent with respect to the trivial automorphism.

Remark 4.3. Let s be a real number. Then dse and bsc are the smallest
integer greater than s and the greatest integer less or equal than s,
respectively.

Theorem 4.4. Suppose Bn = {dn/se : s = 1, 2, · · · , n} and f(n) =
b(1 +

√
4n+ 1)/2c, where n ∈ N. Then

|Bn| =

{ f(n) + b n
f(n)c, f(n) - n

f(n) + n
f(n) − 1, f(n) | n.

Proof. It is clear that dn/se = k if and only if n/k ≤ s < n/(k −
1). This means k ∈ Bn if and only if an integer s in [n/k, n/(k − 1))
exists. We complete the proof by discussing about the length of the
segment. Initially, if n/k(k − 1) ≥ 1, then k ≤ (1 +

√
4n+ 1)/2. Thus

the number of such k is f(n) − 1, where f(n) = b(1 +
√

4n+ 1)/2c.
Secondly, assume the length of segment is strictly less than one. Then
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k = f(n)+1, · · · , n−1 and each segment has at most one integer. Hence
the assertion is clear. �

Theorem 4.5. Let n = pn1
1 · · · p

nk
k . Then N (Zn) =

⋃k
i=1Bni .

Proof. Assume α is an automorphism of the group Zn by multiplying by

u. By Theorem 4.1, Zαc (G) = G if and only if (u − 1)c
n≡ 0. Therefore,

u = p1 · · · pkl + 1 and mic ≥ ni, where (l, pi) = 1 and 1 ≤ i ≤ k. Thus
c = Max{d nimi e : 1 ≤ i ≤ k, 1 ≤ mi ≤ ni} which implies N (Zn) ⊆
∪ki=1Bni . If ui = (n/pni−si ) + 1, then ci = dni/se, where 1 ≤ i ≤ k and
1 ≤ s ≤ ni. Hence the result follows. �

Now by Theorems 3.13 and 4.5, we conclude the following corollary.

Corollary 4.6. The cyclic group Zn is absolute nilpotent if and only if
n = 2m and in this case N (Zn) = Bm.

Theorem 4.7. Let G = D2n+1 = 〈x, y : x2
n

= y2 = (xy)2 = 1〉 be
dihedral group of order 2n+1. Then D2n+1 is absolute nilpotent group
and N (D2n+1) = {n, n+ 1}.

Proof. Suppose αs,t is an automorphism of D2n+1 such that x 7→ xt and
y 7→ xsy, where (t, 2n) = 1, 1 ≤ t ≤ 2n − 1 and 0 ≤ s ≤ 2n − 1. Then

[xi, xj ]αs,t = x(t−1)j , [xiy, xj ]αs,t = x(t+1)j , [xi, xjy]αs,t = x−2i−s−(t−1)j

and [xiy, xjy]αs,t = x2i−s−(t+1)j . Let s be an odd number. Since x2, xs ∈
Γ
αs,t
2 (G) and (2,s)=1, x ∈ Γ

αs,t
2 (G). Therefore, Γ

αs,t
2 (G) = 〈x〉 and hence

Γ
αs,t
m+1(G) = 〈x2m−1〉. Now let s be an even number. Then Γ

αs,t
2 (G) =

〈x2〉 and hence Γ
αs,t
m+1(G) = 〈x2m〉, which complete the proof. �

By similar method, we can deduce Theorems 4.7 and 4.8.

Theorem 4.8. If G = Q2n+2 = 〈x, y : x2n = y2, yxy−1 = x−1〉, then
Q2n+2 is absolute nilpotent and N (Q2n+2) = {n+ 1, n+ 2}.

Theorem 4.9. If G = SD2n+1 = 〈x, y : x2n = y2 = 1, xy = yx2
n−1−1〉,

n ≥ 3, then G is absolute nilpotent and N (SD2n+1) = {n}.

Theorem 4.10. Let G = Mn(p) = 〈x, y : xp
n−1

= yp = 1, xy =

yxp
n−2+1〉. Then G is not absolute nilpotent group and N (G) = Bn−1\1

if n ≥ 4 and N (G) = {2, 3} if n = 3.

Proof. The properties of the group Mn(P ) is as follows:

(i) |Mn(p)| = pn, M ′n(p) = 〈xpn−2〉, Z(Mn(p)) = 〈xp〉.
(ii) Mn(p) = {xiyj : 0 ≤ i ≤ pn−1, 0 ≤ j ≤ p− 1}.
(iii) (xayb)(xcyd) = xa+c−bcp

n−2
yb+d, (xayb)−1 = x−a(1+bp

n−2)y−b,

(xayb)m = xma−ab(
m(m−1)

2
)pn−2

ymb.
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(iv) Aut(Mn(p)) = {αijk : 0 ≤ i ≤ pn−1 − 1, i 6≡ 0 (mod p), 0 ≤
j, k ≤ p− 1}, where αijk is an automorphism of the group such

that x 7→ xiyj and y 7→ xkp
n−2

y.

We consider two cases. Initially, let p be an odd prime number and
n ≥ 3. Therefore, by the Mn(P ) properties, we have

Zαijk(Mn(P )) = {xpt ∈ Z(Mn(p)) : (xpt)αijk = xpt}
= {xpt ∈ Z(Mn(p)) : (xiyj)pt = xpt}
= {xpt ∈ Z(Mn(p)) : (xpt)i = xpt}
= {z ∈ Z(Mn(P )) : zi−1 = 1}.

Thus, Zαijk(Mn(P )) 6= 1 if and only if i = 1 + lps, where (l, p) = 1 and
s = 1, 2, · · · , n − 2. This means Mn(P ) is not absolute nilpotent and
we are going to verify such i. It is clear that M ′n(p) ≤ Zαijk(Mn(P )).
Moreover,

[xayb, xcyd]αijk = [xayb, xcyd][xcyd, αijk]

= (xi−1yj)cx(kd−ij
c(c−1)

2
+ad−bc)pn−2

,

clearly [y, y]αijk = xkp
n−2

, [x, y]αijk = x(k+1)pn−2
and xi−1yj ∈ Γ

αijk
2 (Mn(P ))

which imply Γ
αijk
2 (Mn(P )) = 〈xi−1yj〉M ′n(p). In the sequel for Γ

αijk
3 (Mn(P )),

we have

[xayb, x(i−1)
2c]αijk = x(i−1)

2c+(kjc− ijc(i−1)((i−1)c−1)
2

+ajc)pn−2
.

In particular, if j = 0, then Γ
αijk
3 (Mn(P )) = 〈x(i−1)2〉 which implies

cα10k
= 2. Also if i = j = 1 and k = 0, then Γ

αijk
3 (Mn(P )) = Mn(P )

′

and hence cα110 = 3. Therefore, {2, 3} ⊆ N (Mn(P )). Since i − 1 is a
multiple of number p for Γ

αijk
4 (Mn(P )), we have

[xayb, x(i−1)
2c]αijk = (xi−1yj)(i−1)

2cx−(
i(i−1)2jc((i−1)2c−1)

2
+bc(i−1)2)pn−2

= x(i−1)
3c.

Therefore, Γ
αijk
4 (Mn(P )) = 〈x(i−1)3〉 and similarly Γ

αijk
m+1(Mn(P )) =

〈x(i−1)m〉 for m ≥ 4. If i = 1, then cαijk = 2 or 3. So, we Suppose
that i 6= 1. By an easy computation the least number for power m, for
which x(i−1)

m
= 1 is dn−1s e. Hence the nilpotency class of Mn(P ), is

dn−1s e.
Now, let p = 2. If j = 0, then similar to the previous case we deduce
Bn−1\{1} ⊆ N (Mn(p)). Now, let j = 1 and n ≥ 4. Then

Zαi1k(Mn(P )) = {z ∈ Z(G) : zi(1+2n−3) = z}.
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Thus Zαi1k(Mn(P )) 6= 1 if and only if i(1 + 2n−3) = 1 + 2sl, where

s ∈ {1, · · · , n − 2, · · · } and (l, 2) = 1, since x2
n−1−s ∈ Zαi1k(Mn(P )),

1 ≤ s ≤ n − 1 and Zαi1k(Mn(P )) = Z(G), s ≥ n − 2. Similarly,

Γαi1km+1(Mn(P )) = 〈x(i−1)m〉, where m ≥ 3. It is obvious that for s ≥ n−3,
the nilpotency class is 2 or 3 with respect to αi1k. Now, let s ≤ n − 4.
Then i− 1 = 2st, where t = l − i2n−s−3. By computation, we conclude
the least number for power m is dn−1s e. Hence the result is clear. �

5. Relative Solvable Group

Definition 5.1. Let G be a group and α ∈ Aut(G). We define the
derived subgroup of G with respect to automorphism α as follows

Dα(G) = 〈[x, y]α : x, y ∈ G〉.
Inductively, we introduce the subgroup Di

α(G) defined as D1
α(G) =

Dα(G), Di
α(G) = Dα(Di−1

α (G)). It is clear that

· · ·ED3
α(G)ED2

α(G)ED1
α(G)EG.

Lemma 5.2. Let N and H be subgroups of G. If N EG and Nα = N ,
then Dα(HN) ≤ Dα(H)N .

Proof. Let [h1n1, h2n2]α ∈ Dα(G), where h1, h2 ∈ H and n1, n2 ∈ N .
We have

[h1n1, h2n2]α = n−11 (n−12 )h1 [h1, h2]αn
hα2
1 nα2 .

So [h1n1, h2n2]α ∈ Dα(H)N and assertion deduced. �

Theorem 5.3. Let N be a normal subgroup of G. If Nα = N , then
Dn
α(G/N) = Dn

α(G)N/N .

Proof. The proof follows by induction on n, Definition 5.1 and Lemma
5.2. �

Definition 5.4. The group G is called α-solvable or solvable with re-
spect to α if there is a subnormal series,

{1} = G0 EG1 E · · ·EGn = G (5.1)

such that Gαi = Gi and Dα(Gi+1/Gi) = {1}. The length of the shortest
series with this property is called solvability class of G with respect to
the automorphism α which is denoted by rα.

It is clear that every α-solvable group is solvable. If we denote the
solvability class by r, then r ≤ rα. Let us define S(G) = {rα : α ∈
Aut(G)}. If G is solvable with respect to a non-trivial automorphism,
then it is called non-trivial solvable group. Moreover, if G is solvable
with respect to the all automorphisms of the group, then it is called
absolute solvable group.
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Theorem 5.5. Let G be a group. Then G is α-solvable if and only if
there is an integer r such that Dr

α(G) = {1}.

Proof. Suppose G has a normal series (5.1). Since Dα(Gi+1/Gi) = {1},
we conclude Dα(Gi+1) ≤ Gi. If i = n − 1, then Dα(G) ≤ Gn−1. Thus
D2
α(G) ≤ Dα(G) ≤ Gn−2. By continuing this process, we have Dr

α(G) ≤
G0 = {1}. The converse of the theorem is obvious. �

Corollary 5.6. Let G be a solvable group with respect to α and r the
least positive integer such that Dr

α(G) = {1}. Then r is the length of
solvability of G with respect to the automorphism α.

The following theorem is a direct result of Theorem 5.3.

Theorem 5.7. Let N be a normal subgroup of G and Nα = N.

(i) If G is α-solvable, then G/N is α-solvable.
(ii) If N and G/N is solvable with respect to α and α, then G is

α-solvable.

The following corollary is a direct result of Theorem 5.7.

Corollary 5.8. Suppose M and N are normal subgroups of G and
Mα = M , Nα = N . If M and N are solvable with respect to α, then
MN is α-solvable.

Theorem 5.9. Let G be an abelian group.

(i) If Γαi+1(G) = Di
α(G) and consequently N (G) = S(G).

(ii) If G is absolute solvable, then G is a 2-group.

Proof. The proof of the first part is clear by the definition. For the
second part it is enough to consider the automorphism α : x 7→ −x. �

Theorem 5.10. Let G be a finite group.

(i) If G = D2n+1, then S(G) = (Bn ∪Bn−1) + 1.
(ii) If G = Q2n+2, then S(G) = (Bn ∪Bn+1) + 1.
(iii) If G = SD2n+1, then S(G) = Bn−1 + 1.

Proof. The proof is clear by Theorems 4.7, 4.8 and 4.9. �

Open problems. Let G be a group and α, β ∈ Aut(G). Then

(i) If G is nilpotent (solvable) with respect to α and β, then is G
nilpotent (solvable) with respect to αβ or αn ? And also if G
is solvable with respect to α, then is G solvable with respect to
α−1?

(ii) Each group with non-trivial nilpotency (solvability) is nilpotent
(solvable), is this proposition is invertible?

(iii) If G is a finite p−group, in particular G be a extra special
p−group, then what can we say about its relative nilpotency?
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(iv) With restricting N (G) or S(G) to a given order such as order
1 or 2, what can we say about group G? Moreover if G is an
abelian group, what can we say about N (G) or S(G)?

(v) Is it possible to find upper bound for N (G) or S(G) with respect
to the order of the group?

(vi) For what automorphisms, group G has most nilpotency (solv-
ability) class? Do these automorphisms have basically special
properties?

(vii) What can we say about the groups which have just trivial nilpo-
tency (solvability)?
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