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On a p(x)-Kirchhoff equation via variational methods
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Abstract. This paper is concerned with the existence of two non-
trivial weak solutions for a p(x)-Kirchhoff type problem of the fol-
lowing form{

−M
( ∫

Ω
1

p(x)
|∇u|p(x)dx

)
∆p(x)u = λ(x)|u|q(x)−2u in Ω,

u = 0 on ∂Ω,

by using the mountain pass theorem of Ambrosetti and Rabinowitz
and Ekeland’s variational principle and the theory of the variable
exponent Sobolev spaces.

Keywords: Generalized Lebesgue-Sobolev spaces, Nonlocal con-
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1. Introduction

In this paper, we study the following problem{
−M

( ∫
Ω

1
p(x) |∇u|

p(x)dx
)

∆p(x)u = λ(x)|u|q(x)−2u in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN (N ≥ 3) is a bounded domain with smooth boundary
∂Ω, p(x), q(x) ∈ C(Ω), infΩ p(x) > 1 and infΩ q(x) > 1, M(t) is a
continuous real-valued function.
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The operator −∆p(x)u = div(|∇u|p(x)−2∇u) is said to be the p(x)-
Laplacian, and becomes p-Laplacian when p(x) ≡ p (a constant). An
essential difference between them is that the p-Laplacian operator is
(p − 1)-homogeneous, that is, 4p(λu) = λp−14pu for every λ > 0, but
the p(x)-Laplacian operator, when p(x) is not a constant, is not ho-
mogeneous. The study of problems involving variable exponent growth
conditions has a strong motivation due to the fact that they can model
various phenomena which arise in the study of elastic mechanics [27],
electrorheological fluids [1] or image restoration [5].

Problem (1.1) is called nonlocal because of the presence of the term
M , which implies that the equation in (1.1) is no longer pointwise iden-
tities. This provokes some mathematical difficulties which make the
study of such a problem particulary interesting. Nonlocal differential
equations are also called Kirichhoff-type equations because Kirichhoff
[23] has investigated an equation of the form

ρ
∂2u

∂t2
−
(ρ0

h
+
E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx)∂2u

∂x2
= 0, (1.2)

which extends the classical D’Alembert’s wave equation, by considering
the effect of the changing in the length of the string during the vibra-
tion. A distinguishing feature of Eq. (1.2) is that the equation contains

a nonlocal coefficient ρ0

h + E
2L

∫ L
0

∣∣∣∂u∂x ∣∣∣2dx which depends on the average

1
2L

∫ L
0

∣∣∣∂u∂x ∣∣∣2dx, and hence the equation is no longer a pointwise identity.

The parameters in (1.2) have the following meanings: L is the length of
the string, h is the area of the cross-section, E is the Young modulus of
the material, ρ is the mass density and P0 is the initial tension. Lions
[24] has proposed an abstract framework for the Kirchhoff-type equa-
tions. After the work of Lions [24], various equations of Kirchhoff-type
have been studied extensively, see e.g. [3]-[11]. The study of Kirchhoff
type equations has already been extended to the case involving the p-
Laplacian (for details, see [6, 7, 10, 11, 25], [19]-[22]) and p(x)-Laplacian
(see [8, 9, 18]).

2. Notations and preliminaries

For the reader’s convenience, we recall some necessary background
knowledge and propositions concerning the generalized Lebesgue-Sobolev
spaces. We refer the reader to [12]-[15].

Let Ω be a bounded domain of RN , denote

C+(Ω) = {p(x); p(x) ∈ C(Ω), p(x) > 1, ∀x ∈ Ω}

p+ = max{p(x); x ∈ Ω}, p− = min{p(x); x ∈ Ω};
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Lp(x)(Ω) =
{
u; u is a measurable real-valued function such that∫

Ω
|u(x)|p(x) dx <∞

}
,

with the norm

|u|Lp(x)(Ω) = |u|p(x) = inf
{
µ > 0;

∫
Ω
|u(x)

µ
|p(x)dx ≤ 1

}
,

and

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω); |∇u| ∈ Lp(x)(Ω)},

endowed with the natural norm

‖u‖W 1,p(x)(Ω) = |u(x)|Lp(x)(Ω) + |∇u(x)|Lp(x)(Ω),

or equivalently

‖u‖ = inf
{
µ > 0;

∫
Ω

|∇u(x)|p(x) + |u|p(x)

µp(x)
dx ≤ 1

}
.

Denote by W
1,p(x)
0 (Ω) the closure of C∞0 (Ω) in W 1,p(x)(Ω). For u ∈

W
1,p(x)
0 (Ω), we define an equivalent norm

‖u‖ = |∇u(x)|Lp(x)(Ω),

since Poincaré inequality holds, i.e., there exists a positive constant C
such that

|u|p(x) ≤ C|∇u(x)|p(x),

for all u ∈W 1,p(x)
0 (Ω), see [17].

Proposition 2.1 (See [13, 15]). The space Lp(x)(Ω), W 1,p(x)(Ω) and

W
1,p(x)
0 (Ω) are separable and reflexive Banach spaces.

Proposition 2.2 (See [13, 15]). (i)The conjugate space of Lp(x)(Ω) is

Lp
′(x)(Ω), where 1

p(x) + 1
p′(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω),

we have ∫
Ω
|uv|dx ≤

( 1

p−
+

1

p′−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x)

(ii)If p1(x), p2(x) ∈ C+Ω, p1(x) ≤ p2(x), ∀x ∈ Ω, then Lp2(x)(Ω) ↪→
Lp1(x)(Ω) and the embedding is continuous.
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Proposition 2.3 (See [16]). Set ρ(u) =
∫

Ω |∇u(x)|p(x)dx, then for

u, uk ∈W 1,p(x)(Ω); we have

(1)‖u‖ < 1(respectively = 1;> 1)⇐⇒ ρ(u) < 1(respectively = 1;> 1);

(2) for u 6= 0, ‖u‖ = λ⇐⇒ ρ(
u

λ
) = 1;

(3) if ‖u‖ > 1, then ‖u‖p− ≤ ρ(u) ≤ ‖u‖p+
;

(4) if ‖u‖ < 1, then ‖u‖p+ ≤ ρ(u) ≤ ‖u‖p− ;

(5)‖uk‖ → 0(respectively →∞)⇐⇒ ρ(uk)→ 0(respectively →∞).

Let us define, for every x ∈ Ω,

p∗(x) =

{
Np(x)
N−p(x) if p(x) < N,

∞ if p(x) ≥ N.

Proposition 2.4 (See [15]). If q ∈ C+(Ω) and q(x) ≤ p∗(x) (q(x) <
p∗(x)) for x ∈ Ω, then there is a continuous (compact) embedding

W 1,p(x)(Ω) ↪→ Lq(x)(Ω).

In this paper, we denote by X = W
1,p(x)
0 (Ω); X∗ = (W

1,p(x)
0 (Ω))∗, the

dual space and 〈., .〉, the dual pair.

Lemma 2.5 (See [17]). Denote

J(u) =

∫
Ω

1

p(x)
|∇u|p(x)dx, ∀u ∈ X,

then J(u) ∈ C1(X,R) and the derivative operator J ′ of J is

〈J ′(u), v〉 =

∫
Ω
|∇u|p(x)−2∇u∇vdx, ∀u, v ∈ X,

and we have

(1) J is a convex functional ,

(2) J ′ : X → X∗ is a bounded homeomorphism and strictly

monotone operator,

(3)J ′ is a mapping of type (S+), namely

un ⇀ u and lim sup
n→+∞

J ′(un)(un − u) ≤ 0, implies un → u.

Hereafter, λ(x), q(x) and M(t) are always supposed to verify

(M1) there exists a positive constant m0 such that M(t) ≥ m0,

(M2) there exists µ ∈ (0, 1) such that M̂(t) ≥ (1− µ)M(t)t,
(Λ1) λ ∈ L∞(Ω),
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(Λ2) there exists an x0 ∈ Ω and two positive constants r and R

with 0 < r < R such that BR(x0) ⊂ Ω and λ(x) = 0 for

x ∈ BR(x0)\Br(x0) while λ(x) > 0 for x ∈ Ω\BR(x0) \Br(x0),
(Q1) q ∈ C+(Ω) and 1 ≤ q(x) < p∗(x) for any x ∈ Ω,

(Q2) either max
Br(x0)

q < p− < p−

1−µ < p+ < p+

1−µ
< min

Ω\BR(x0)
q,

or max
Ω\BR(x0)

q < p− < p−

1−µ < p+ < p+

1−µ < min
Br(x0)

q.

The Euler-Lagrange functional associated to (1.1) is given by

I(u) = M̂
(∫

Ω

1

p(x)
|∇u|p(x)dx

)
−
∫

Ω

λ(x)

q(x)
|u|q(x)dx,

where M̂(t) =
∫ t

0 M(τ)dτ. It is easy to verify that I ∈ C1(X,R) is weakly
lower semi-continuous with the derivative given by

〈I ′(u), v〉 = M
(∫

Ω

1

p(x)
|∇u|p(x)dx

)∫
Ω
|∇u|p(x)−2∇u∇v)dx

−
∫

Ω
λ(x)|u|q(x)−1uvdx,

for all u, v ∈ X. Thus, we notice that we can seek weak solutions of
(1.1) as critical point of the energetic functional I.

Remark 2.6. From (M1) and Lemma 2.5 we can easily see that φ′, i.e.

〈φ′(u), v〉 = M
(∫

Ω

1

p(x)
|∇u|p(x)dx

)∫
Ω
|∇u|p(x)−2∇u∇vdx

is of (S+) type.

Theorem 2.7. Assume that conditions (Λ1)− (Λ2), (Q1)− (Q2) and
(M1) − (M2) are fulfilled. Then there exists λ∗ > 0 such that problem
(1.1) has at least two positive non-trivial weak solutions, provided that
|λ|L∞(Ω) < λ∗.

3. Proof of the main result

In this section we discuss the existence of two non-trivial weak solu-
tions of (1.1) by using the mountain pass theorem of Ambrosetti and
Rabinowitz and Ekland’s variational principle. For simplicity, we use
C, ci, i = 1, 2, . . . to denote the general positive constant (the exact
value may change from line to line).
Let us state now the mountain pass theorem and Ekland’s variational
principle.
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Definition 3.1. A functional I satisfies the Palais-Smale condition
(PS)c on a Banach space X, if any sequence (un) ⊂ X such that

I(un)→ c, ‖I ′(un)‖X∗ → 0

has a convergent subsequence.

Theorem 3.2. (Mountain Pass Theorem, Ambrosetti and Rabinowitz
[2]). Let X be a Banach space and let I ∈ C1(X,R), e ∈ X and r > 0
be such that ‖e‖ > r and

inf
u∈X, ‖u‖=r

I(u) > I(0) ≥ I(e).

If I satisfies the (PS)c condition with

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) where Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e}

then c is a critical value of I.

Theorem 3.3. (Ekeland Variational Principle [26]). Let X be a Banach
space, I ∈ C1(X,R) be bounded below, and let ε, δ > 0 be arbitrary. If

I(v) ≤ inf
u∈X

I(u) + ε for a v ∈ X,

then there exists u0 ∈ X such that

I(u0) ≤ inf
u∈X

I(u) + 2ε, ‖u0 − v‖ ≤ 2δ, and ‖I ′(u0)‖X∗ <
8ε

δ
.

Corollary 3.4. (See [26]) Let I ∈ C1(X,R) be bounded below. If I
satisfies the (PS)c condition with c := infu∈X I(u), then every minimiz-
ing sequence (un) for I, i.e. limn→∞ I(un) = infu∈X I(u), contains a
converging subsequence. In particular, there exists u0 ∈ X such that

I(u0) = min
u∈X

I(u).

We confine ourselves to the case where the former condition of (Q2)
holds true. A similar proof can be made if the later condition holds true.

Lemma 3.5. Let q(x), λ(x), and M(t) be as in Theorem 2.7, then
there exist ρ > 0 and δ > 0 such that I(u) ≥ δ > 0 for any u ∈ X with
||u|| = ρ.

Proof. Let us define q1 : Br(x0) → [1,∞), q1(x) = q(x) for any x ∈
Br(x0) and q2 : Ω\BR(x0)→ [1,∞), q2(x) = q(x) for any x ∈ Ω\BR(x0).
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We also introduce the notation

q−1 = min
x∈Br(x0)

q1(x), q+
1 = max

x∈Br(x0)
q1(x),

q−2 = min
x∈Ω\BR(x0)

q2(x), q+
2 = max

x∈Ω\BR(x0)
q2(x).

Then by relations (Q1) and (Q2) we have

1 ≤ q−1 ≤ q
+
1 < p− <

p−

1− µ
< p+ <

p+

1− µ
< q−2 ≤ q

+
2 < p∗(x),

for any x ∈ X. Thus, we have

X ↪→ Lq
±
i (Ω), i ∈ {1, 2}.

So, there exists a positive constant C such that∫
Ω
|u|q

±
i dx ≤ C‖u‖q

±
i , ∀u ∈ X, i ∈ {1, 2}.

It follows that there exist two positive constants c1 and c2 such that∫
Br(x0)

|u|q1(x)dx ≤
∫
Br(x0)

|u|q
−
1 dx+

∫
Br(x0)

|u|q
+
1 dx

≤
∫

Ω
|u|q

−
1 dx+

∫
Ω
|u|q

+
1 dx

≤ c1

(
||u||q

−
1 + ‖u‖

q+1
)
, (3.1)

and ∫
Ω\BR(x0)

|u|q2(x)dx ≤
∫

Ω\BR(x0)
|u|q

−
2 dx+

∫
Ω\BR(x0)

|u|q
+
2 dx

≤
∫

Ω
|u|q

−
2 dx+

∫
Ω
|u|q

+
2 dx

≤ c2

(
‖u‖q

−
2 + ‖u‖

q+2
)
. (3.2)

In view of (M1) and relations (3.1) and (3.2), for ‖u‖ sufficiently small,
noting Proposition 2.3, we have

I(u) ≥ m0

p+

∫
Ω
|∇u|p(x)dx−

∫
Br(x0)

λ(x)

q(x)
|u|q(x)dx−

∫
Ω\BR(x0)

λ(x)

q(x)
|u|q(x)dx

≥ m0

p+
‖u‖p+ −

|λ|L∞(Ω)

q−
C(‖u‖q

−
1 + ‖u‖q

+
1 + ‖u‖q

−
2 + ‖u‖q

+
2 )

≥
[
c3‖u‖p

+ − c4|λ|L∞(Ω)(‖u‖q
−
1 + ‖u‖q

+
1 )
]

+
[
c3‖u‖p

+ − c4|λ|L∞(Ω)(‖u‖q
−
2 + ‖u‖q

+
2 )
]
.
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Since the function g : [0, 1]→ R defined by

g(t) = c3 − c4t
q−2 −p+ − c4t

q+
2 −p+

is positive in a neighborhood of the origin, it follows that there exists
0 < ρ < 1 such that g(ρ) > 0. On the other hand, defining

λ∗ = min
{

1,
c3

2c4
min{ρp+−q−1 , ρp

+−q+
1 }
}
, (3.3)

we deduce that there exists δ > 0 such that for any u ∈ X with ‖u‖ = ρ
we have I(u) ≥ δ > 0 provided |λ|L∞(Ω) < λ∗. �

Lemma 3.6. Let q(x), λ(x), and M(t) be as in Theorem 2.7, then there
exists ψ ∈ X, ψ 6= 0 such that limt→∞ I(tψ)→ −∞.

Proof. Let ψ ∈ C∞0 (Ω), ψ ≥ 0 and there exist x1 ∈ Ω\BR(x0) and ε > 0
such that for any x ∈ Bε(x1) ⊂ (Ω\BR(x0)) we have ψ(x) > 0. When
t > t0, from (M2) we can easily obtain that

M̂(t) ≤ M̂(t0)

t
1

(1−µ)

0

:= Ct
1

(1−µ) ,

where t0 is an arbitrary positive constant. Thus, for t > 1 we have

I(tψ) = M̂
(∫

Ω

1

p(x)
|∇tψ|p(x)dx

)
−
∫

Ω

λ(x)

q(x)
|tψ|q(x)dx

≤ c6

(∫
Ω
|t∇ψ|p(x)dx

) 1
(1−µ) −

∫
Ω\BR(x0)

λ(x)

q(x)
|tψ|q(x)dx

≤ c6t
p+

(1−µ)

(∫
Ω
|∇ψ|p(x)dx

) 1
(1−µ) − tq

−
2

∫
Ω\BR(x0)

λ(x)

q(x)
|ψ|q(x)dx

→ −∞ as t→∞,

due to p+

1−µ < q−2 . �

By Lemmas 3.5 and 3.6 and the mountain pass theorem of Ambrosetti
and Rabinowitz [2], we deduce the existence of a sequence (un) such that

I(un)→ c7 > 0 and I ′(un)→ 0 in X∗ as n→∞. (3.4)

We prove that (un) is bounded in X. Assume for the sake of contradic-
tion, if necessary to a subsequence, still denote by (un), ‖un‖ → ∞ and
‖un‖ > 1 for all n.
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By Proposition 2.3, we may infer that for n large enough

1 + c8 + ‖un‖ ≥ I(un)− 1

q−2
〈I ′(un), un〉

= M̂

(∫
Ω

1

p(x)
|∇un|p(x) dx

)
−
∫

Ω

λ(x)

q(x)
|un|q(x) dx

− 1

q−2

[
M
(∫

Ω

1

p(x)
|∇un|p(x) dx

)∫
Ω
|∇un|p(x) dx

−
∫

Ω
λ(x)|un|q(x) dx

]
≥ (1− µ)

p+
M

(∫
Ω

1

p(x)
|∇un|p(x) dx

)∫
Ω
|∇un|p(x) dx

−
∫

Ω

λ(x)

q(x)
|un|q(x) dx− 1

q−2

[
M
(∫

Ω

1

p(x)
|∇un|p(x) dx

)
∫

Ω
|∇un|p(x) dx−

∫
Ω
λ(x)|un|q(x) dx

]
≥ m0

(
1− µ
p+

− 1

q−2

)∫
Ω
|∇un|p(x) dx

+

∫
Br(x0)

(
1

q−2
− 1

q1(x)

)
λ(x)|un|q1(x) dx

≥ m0

(
1− µ
p+

− 1

q−2

)
‖un‖p

−

− λ∗
(

1

q−1
− 1

q−2

)∫
Br(x0)

|un|q1(x) dx

≥ m0

(
1− µ
p+

− 1

q−2

)
‖un‖p

−

− c1λ
∗
(

1

q−1
− 1

q−2

)(
‖un‖q

−
1 + ‖un‖q

+
1

)
≥ m0

(
1− µ
p+

− 1

q−2

)
‖un‖p

− − c8

(
‖un‖q

−
1 + ‖un‖q

+
1

)
.

But, this cannot hold true since p− > 1. Hence (un) is bounded in
X. This information combined with the fact X is reflexive implies that
there exists a subsequence, still denote by (un), and u1 ∈ X such that

un ⇀ u1 in X. Since X is compactly embedded in Lq(x)(Ω), it follows

that un → un in Lq(x)(Ω). Using Proposition 2.2 we deduce

lim
n→∞

∫
Ω
λ(x)|un|q(x)−2un(un − u1)dx = 0.
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This fact and relation (3.4) yield

lim
n→∞

M
(∫

Ω

1

p(x)
|∇un|p(x)dx

)∫
Ω
|∇un|p(x)−2∇un(∇un −∇u1) = 0.

In view of (M1), we have

lim
n→∞

∫
Ω
|∇un|p(x)−2∇un(∇un −∇u1) = 0.

Using Lemma 2.5, we find that un → u1 in X. Then by relation (3.4)
we have

I(u1) = c7 > 0 and I ′(u1) = 0,

that is u1 is a non-trivial weak solution of (1.1).
We hope to apply Ekeland’s variational principle [26] to get a non-

trivial weak solution of problem (1.1).

Lemma 3.7. Let all conditions in Theorem 2.7 hold. Then there exists
ϕ ∈ X, ϕ 6= 0 such that I(tϕ) < 0 for t > 0 small enough.

Proof. Let ϕ ∈ C∞0 (Ω), ϕ ≥ 0 and there exist x2 ∈ Br(x0) and ε > 0
such that for any x ∈ Bε(x2) ⊂ Br(x0) we have ϕ(x) > 0. For any
0 < t < 1, we have

I(tϕ) = M̂
(∫

Ω

1

p(x)
|∇tϕ|p(x)dx

)
−
∫

Ω

λ(x)

q(x)
|tϕ|q(x)dx

≤ c10

(∫
Ω
|t∇ϕ|p(x)dx

) 1
(1−µ) −

∫
Br(x0)

λ(x)

q(x)
|tϕ|q(x)dx

≤ c10t
p−

(1−µ)

(∫
Ω
|∇ϕ|p(x)dx

) 1
(1−µ) − tq

+
1

∫
Br(x0)

λ(x)

q1(x)
|ϕ|q1(x)dx.

So I(tϕ) < 0 for t < θ

1

(
p−
1−µ−q

+
1 ) , where

0 < θ < min
{

1,

∫
Br(x0)

λ(x)
q1(x) |ϕ|

q1(x)dx∫
Ω |∇ϕ|p(x)dx

}
.

�

Let λ∗ > 0 be defined as in (3.3) and assume |λ|L∞(Ω) < λ∗. By
Lemma 3.5 it follows that on the boundary of the ball centered at the
origin and of radius ρ in X, denoted by Bρ(0) = {ω ∈ X; ||ω|| < ρ}, we
have

inf
∂Bρ(0)

I > 0.

By Lemma 3.7, there exists ϕ ∈ X such that

I(tϕ) < 0 for t > 0 small enough .
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Moreover, for u ∈ Bρ(0),

I(u) ≥
[
c3‖u‖p

+ − c4|λ|L∞(Ω)(‖u‖q
−
1 + ‖u‖q

+
1 )
]

+
[
c3‖u‖p

+ − c4|λ|L∞(Ω)(‖u‖q
−
2 + ‖u‖q

+
2 )
]
.

It follows that

−∞ < c11 = inf
Bρ(0)

I < 0.

We let now 0 < ε < inf∂Bρ(0) I − infBρ(0) I. Applying Ekeland’s varia-

tional principle [26] to the functional I : Bρ(0)→ R, we find uε ∈ Bρ(0)
such that

I(uε) < inf
Bρ(0)

I + ε

I(uε) < I(u) + ε||u− uε||, u 6= uε.

Since

I(uε) ≤ inf
Bρ(0)

I + ε ≤ inf
Bρ(0)

I + ε < inf
∂Bρ(0)

I,

we deduce that uε ∈ Bρ(0). Now, we define K : Bρ(0) → R by K(u) =
I(u) + ε‖u− uε‖. It is clear that uε is a minimum point of K and thus

K(uε + tv)−K(uε)

t
≥ 0,

for small t > 0 and v ∈ B1(0). The above relation yields

I(uε + tv)− I(uε)

t
+ ε‖v‖ ≥ 0.

Letting t → 0 it follows that 〈I ′(uε), v〉 + ε‖v‖ > 0 and we infer that
‖I ′(uε)‖ ≤ ε. We deduce that there exists a sequence (vn) ⊂ Bρ(0) such
that

I(vn)→ c11 and I ′(vn)→ 0. (3.5)

It is clear that (vn) is bounded in X. Thus, there exists u2 ∈ X such
that, up to a subsequence, (vn) converges weakly to u2 in X. Actually,
with similar arguments as those used in the proof that the sequence
un → u1 in X we can show that vn → u2 in X. Thus, by relation (3.5),

I(u2) = c11 < 0 and I ′(u2) = 0,

i.e., u2 is a non-trivial weak solution for problem (1.1).
Finally, since

I(u1) = c7 > 0 > c11 = I(u2),

we see that u1 6= u2. Thus, problem (1.1) has two non-trivial weak
solutions.
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[12] D.E. Edmunds, J. Rǎkosńık, Sobolev embedding with variable exponent, Stu-
dia Math., 143 (2000), 267-293.
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