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1. Introduction

Cancer is one of the main causes of death in the world today and
the second most fatal disease after cardiovascular disease. The World
Health Organization (WHO) estimates that the annual cancer-induced
mortality number exceeds six million people hence the fight against can-
cer is one of the most important public health interests [?]. The usual
therapies of cancer are surgery, radiotherapy, chemotherapy, and im-
munotherapy (For a history of cancer therapy see [?, ?]). Although
cancer treatment has progressed in many ways, some specific forms of
cancer still have very limited treatment options. Many tumors are com-
pletely untreatable and so require a wider set of treatments. Oncolytic
virotherapy is a novel therapeutic idea to treat cancer. The overall
strategy in oncolytic virus therapy is to infect the tumor with specific
viruses that kill the tumor cells but ignore the normal cells. For more
than a hundred years, viruses had been pursued as experimental agents
of cancer destruction. Interest in the field has fluctuated during this
time. Some results were reached in the early 20th century and then due
to technological limitations, followed by near-abandonment in the 1970s
and 1980s. Now that genetic engineering and virology have advanced
rapidly over the past two decades, the interest in oncolytic virus therapy
has been revisited[?]. When oncolytic viruses are inoculated into a can-
cer patient or directly injected into a tumor, they spread throughout the
tumor, and infect tumor cells. The viruses that are in the infected tumor
cells replicate themselves. Upon lysis of infected tumor cells, new virion
particles burst out and proceed to infect additional tumor cells. On-
colytic viruses have two types: oncolytic wild viruses and gene-modified
viruses. Oncolytic wild viruses that naturally occur with preferential in
human cancer cells include the parvoviruses H-1, Vesicular Stomatitis
Virus (VSV), Newcastle Disease Virus (NDV), Coxsackievirus A21, etc.
While gene-modified oncolytic viruses include Adenovirus, Herpes sim-
plex, Vaccinia virus, etc.( Some of the other oncolytic viruses introduced
in [?]). Moreover, a large number of viruses is being tested for potential
as oncolytic viruses [?, ?].
Although virotherapy is low-cost and elite in comparison to other clas-
sical treatments of cancer, it has not yet lived up to its expectations.
The reason maybe is that different factors influence virotherapy. One of
the major problems in virotherapy is the replicative ability of oncolytic
viruses within tumor cells [?]. However genetic engineering has made it
possible to modify the viral genome to improve the replicative ability of
oncolytic viruses. Another fundamental problem in cancer research is to
understand the complex dynamics of the interaction between the tumor
and the anti-tumor elements of the body’s immune response. Immune
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responses are largely of two types: the innate immune response and the
adaptive immune response. Broadly they are of two types, the anti-
bodies, and the killer cells. While the antibodies fight foreign elements
like viruses, bacteria, etc. By recognizing foreign proteins outside the
cells, the killer cells recognize the mutated proteins of the cancer cells
on display on cell walls. These killer cells are also known as cytotoxic T-
lymphocytes (CTL). After the recognition, the CTLs undergo a process
of cell division. Then they release certain molecules, perforin for in-
stance, which kills cancer affected cells. The process is called reactivity.
It is also possible that the CTLs fail to recognize the mutated proteins as
different from normal proteins of the body. In this case, the phenomena
of tolerance are said to take place. It is believed that the progress of
cancer is in the period when the adaptive immune system exhibits tol-
erance [?]. Another challenge is that when an oncolytic virus is injected
into a tumor for the first time, the immune system makes a memory of
it and in the next injections the immune system distinguishes the virus
and starts an immunity mechanism by CTLs to suppress the infection.
Indeed, the influence of the immune system at the second injection of
the virus is much better in comparison with that of the first injection
[?]. Thus, it is a real problem in the second injection that the immune
system annihilates the viral infection before the virus can annihilate the
tumor.
On the other hand from [?] we know that at the molecular level, the
lytic cycle of a virus has six stages. To infect a cell, a virus must enter
the cell through the plasma membrane. The virus attaches to a receptor
on the cell membrane and then releases its genetic materials into the
cell. These are the first two stages, called adsorption and penetration.
The third stage is the integration that the host cell gene expression is
arrested, and viral materials are embedded into the host cell nucleus.
The fourth stage is biosynthesis that the virus uses the cell machinery
to make a large number of viral components, and in the meantime, de-
stroys the host’s DNA. Then, it enters the last two stages, maturation
and lysis. When many copies of viral components are made, they are
assembled into complete viruses. The number of newly formed viruses is
called the burst size of the virus. These phages direct the production of
enzymes that break down the host cell membrane. The cell eventually
bursts, and new viruses come out. During the lytic cycle, each stage is
mediated by a diverse group of proteins, and each stage needs some time
to complete. Overall, the burst size and the time of the intracellular vi-
ral life cycle are important factors in viral therapy. So different agents
can influence the outcomes of virotherapy.
Although a clear picture of the dynamic of virotherapy seems hard to
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obtain, mathematical modeling can help us to understand such a com-
plicated process. To model the virotherapy process, researchers use or-
dinary differential equations, delayed differential equations, and partial
differential equations. Each presented mathematical model studied the
effects of some special factors influence in virotherapy. One of the first
of these models was presented by Wodarz [?, ?]. He formulated a simple
model with three ordinary differential equations including three hypo-
thetical situations: viral cytotoxicity alone kills tumor cells, a virus-
specific lytic CTL response contributes to killing of infected tumor cells,
and the virus elicits immunostimulatory signals within the tumor, which
promote the development of tumor-specific CTL. Bajzer et al. proposed
a mathematical model for recombinant measles viruses. Their model
includes the free virus population besides the tumor cell population and
infected tumor cell populations [?]. Based on the Bajzers model, in [?]
Tian proposed the following model for virotherapy

dx
dt = λx(1− x+y

K )− βxv
dy
dt = βxv − δy
dv
dt = bδy − βxv − γv

(1.1)

where x, y and v represent uninfected tumor cell ,infected tumor cell, and
virus population respectively. He found that the viral burst size plays
an important role in the dynamics of oncolytic treatments. Choudhury
and Nasipuri [?] considered a simple model of three ordinary differential
equations for the dynamics of oncolytic virotherapy in the presence of
immune response. However, this model did not include the free virus
population, and it may not give a complete picture of the dynamics of
viral therapy with innate immune response.
In this paper we consider the role of lytic cycle of oncolytic viruses and
the immune system in virotherapy. In our study based on the common
basic model given [?] we propose a mathematical model for the dynamics
of cancer virotherapy. As we mention, the population of viruses and the
immune system are the factors that affect the outcome of virotherapy,
so it is necessary and realistic to incorporate the lytic cycle and immune
system responding, in the original model. In our model, we describe the
competition between tumor cells, immune system, and oncolytic viruses.
We consider the effect of the immune system in the role of virus-specific
CTLs. The model we propose is given by


dx
dt = rx(1− x

C )− βxv
dv
dt = bδx(t− τ)− βxv − dvz − ev
dz
dt = pvz − qz.

(1.2)
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The first equation represents the change of the tumor population. The
tumor cells growth is modeled by common logistic growth, rx(1 − x

C )
where C is maximal tumor size. The term βxv represents the infection
of tumor cells by viruses. The second equation of (??) gives the change
in the population of the new viruses which are coming out from the
lysis of infected tumor cells. In fact, we simulated the population of
newborn viruses by this idea: a part of tumor cells( which we denote it
by coefficient δ ) is infected by viruses and after time τ the lytic cycle of
viruses is completed and new viruses are born. So we take the discrete
time delay for the lytic cycle of the virus in the second equation. b is
burst size of the virus. The term dvz represents the killing of viruses
by virus-specific CTLs. e is the clearance rate of the virus. The third
equation describes the population of virus-specific CTLs. We assumed
that the production of CTLs depends on both the population of viruses
and CTL cells. So we modeled activation of CTLs by pvz. q is death
rate of CTLs. However for the simplicity of mathematical analysis, we
neglect the infected tumor cells from the original model, but the term
δx(t − τ) implicitly simulates the infected tumor cells population. The
advantage of this model over other presented models is that we consider
the role of the immune system and the lytic virus cycle in the dynamics
of viral therapy simultaneously. So this model is more realistic than
others. By using the following notations

x̄ =
x

C
, v̄ =

v

C
, z̄ =

z

C
, β̄ = βC, d̄ = dC, p̄ = pC, b̄ = δb

and then dropping the over bar, system (??) can be written as
dx
dt = rx(1− x)− βxv
dv
dt = bx(t− τ)− βxv − dvz − ev
dz
dt = pvz − qz.

(1.3)

This paper is organized as follows. We will provide some mathemat-
ical analysis for the model (??) in the absence of delay in the next
section. This analysis includes positivity of solutions, existence periodic
solutions, calculating equilibria and determining conditions for their sta-
bility in terms of burst size b . In section (??) we will study the delayed
model. We determine the stability of equilibrium solutions and condi-
tions that the system undergoes Hopf bifurcation in terms of delay value.
To validate our analytical results, we present a numerical simulation and
biological arguments in section (??).

2. Preliminary results

In this section, we present some common analysis of the model in the
absence of delay which will be used in the next section for the original
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model. When τ = 0 we have the following system. x′ = rx(1− x)− βxv
v′ = bx− βxv − dvz − ev
z′ = pvz − qz.

(2.1)

First, we state the following lemma for the solutions of the system (??),
which shows that the solutions are non-negative. Boundedness of the
solutions has proved in the next section for the general case. In fact the
set

Ω+ = {(x, v, z)|x ≥ 0, v ≥ 0, z ≥ 0} ⊂ R3

is positively invariant for the system.

Lemma 2.1. Suppose that (x(t), v(t), z(t)) be a solution of system (??)
and x(0) > 0, v(0) > 0, z(0) > 0. Then x(t) ⩾ 0, v(t) ⩾ 0 and z(t) ⩾ 0
for all t ≥ 0.

Proof. If the conclusion x(t) ⩾ 0, v(t) ⩾ 0 and z(t) ⩾ 0 for all t ≥ 0 is
not true, there must be a time t1, such that there is at least one com-
ponent that will be zero first. If x(t1) = 0 first, then x′(t1) = 0. From
the first equation, by the uniqueness of the solution we know x(t) = 0
for all t ⩾ t1. Then the second equation becomes v′(t) = −dvz − ev.

Its solution is v(t) = v(t1)e
∫ t
t1
(−dz−e)ds

. So for all t ≥ t1, v(t) > 0 since
v(t1) > 0. Similarly from the third equation we have z′(t) = (pv − q)z

which has the solution z(t) = z(t1)e
∫ t
t1
((pv−q)ds

. Since z(t1) > 0, z(t) > 0
for all t ⩾ t1.
If v(t1) = 0 first, from the second equation v′(t1) = bx(t1) > 0. So
v(t) ⩾ 0 after t1. In this case it is clear that x(t) ⩾ 0 and z(t) ⩾ 0.
Finally if z(t1) = 0 first, then from the third equation and uniqueness
of the solution, z(t) = 0 when t ⩾ t1. If z(t) = 0 the second equation
becomes v′(t) = bx−βxv−ev which is first order linear differential equa-

tion and has the solution v(t) = e
−

∫ t
t1
(βx+e)ds

(v(t1)+
∫ t
t1
bxe

∫
(βx+e)dτds).

Since v(t1) > 0 and x(t) ⩾ 0 then v(t) ⩾ 0 when t ⩾ t1. □

In the continuation of this section, we calculate the fixed points of the
system. Then we present the conditions for their stability and describe
their stability from a biological point of view.

2.1. Stability of the fixed points. In this study we assume that
growth rate of tumor is bigger than infection rate and activation rate of
CTLs is bigger than the death rate of CTLs. So β < r and q < p. These
assumptions are biologically reasonable. It is clear that E0 = (0, 0, 0) is
a fixed point of this system. To obtain other fixed points, from the third
equation we have pvz − qz = 0. So z = 0 or v = q

p . If v = q
p and x ̸= 0,
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from the first equation we have x = 1− βv
r and by the second equation

z = bx−βxv−ev
dv . Then we get

x∗ := 1− βq

pr
, v∗ :=

q

p
, z∗ :=

p

qd
((b− βq

p
)(1− βq

pr
)− eq

p
)

On the other hand if we assume that x ̸= 0 and z = 0, then by the first
equation v = r

β (1− x). By replacing in the second equation we get the

the equation

−rx2 + (r − b− er

β
)x+

er

β
= 0.

Since the parameters are positive this equation has one positive solution
for x as:

x =
r − b− er

β +
√

(r − b− er
β )

2 + 4r2 e
β

2r
.

As we assumed that β < r and q < p, so x∗ and v∗ are positive. If we
assumed b > βq

p + eqr
pr−βq , then z∗ is positive. In the other word when

the burst size is bigger than the certain value b∗ := βq
p + eqr

pr−βq , then we

have a new positive fixed point. Furthermore we see that x is positive
and

r−b− er
β
+
√

(r−b− er
β
)2+4r2 e

β

2r <
r−b− er

β
+
√

(r+b+ er
β
)2

2r = 2r
2r = 1.

This implies that x < 1 and then v = r
β (1−x) > 0. So this fixed points

have positive components and are biologically valid. We summarize this
argument in the next lemma.

Lemma 2.2. Suppose β < r, q < p and b > b∗. Then system has
three non-negative fixed points: E0 = (0, 0, 0), E = (x, v, 0) and E∗ =
(x∗, v∗, z∗), where x, v, x∗, v∗ and z∗ are given as below:

x =
r − b− er

β +
√

(r − b− er
β )

2 + 4r2 e
β

2r
, v =

r(1− x)

β
,

x∗ = 1− βq

pr
, v∗ =

q

p
, z∗ =

p

qd
((b− βq

p
)(1− βq

pr
)− eq

p
).

To determine the stability of the fixed points we use the variational
matrix of the system which is given by r − 2rx− βv −βx 0

b− βv −βx− dz − e −dv
0 pz pv − q

 .
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So the variational matrix of system in E0 is r 0 0
b −e 0
0 0 −q

 .

Since the eigenvalue of matrix are r,−e,−q and r > 0, the fixed point
E0 is unstable.

Lemma 2.3. Suppose that K1 =
2βq
p − er

β −r, K2 = ( q
βq−pr )(

β2q
p −rβ−er)

and K3 = max{K1,K2}. If b > K3, then E is asymptotically stable.
Otherwise E is unstable when K1 < b < K2.

Proof. The variational matrix in the fixed point E is given by r − 2rx− βv −βx 0
b− βv −βx− e −dv

0 0 pv − q

 .

On the other hand,

r − 2rx− βv = −rx βx+ e =
bx

v
βv − b = −ev

x
.

So the characteristic polynomial is given by

f(λ) = (λ+ q − pv)(λ2 + (b
x

v
+ rx)λ+ (

bx

v
)(rx) + βev).

We take a0 = bxv +rx and a1 = ( bxv )(rx)+βev. Because the parameters,
x and v are positive, we conclude that a0 > 0 and a1 > 0. Therefore by
the Routh-Hurwitz Criterion, all roots of the polynomial λ2 + a0λ+ a1
have negative real part. So stability of E is determined by the sign
of pv − q. We know that if pv − q < 0 then E asymptotically stable.
pv − q < 0 is equivalent to:√

(r − b− er

β
)2 +

4er2

β
< r + b+

er

β
− 2βq

p
.

Solving this inequality ( note that βq < pr and we suppose that b >
2βq
p − er

β − r) in term of b, we get b > ( q
βq−pr )(

β2q
p − rβ− er). Otherwise

if

b < (
q

βq − pr
)(
β2q

p
− rβ − er),

then pv − q > 0 and so f(λ) has a positive root which means that E is
unstable. □

Stability of fixed point E∗

When the burst size of virus (b)is bigger than value b∗ then system has
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fixed point E∗ with non-negative components. The variational matrix
of system in E∗ is given by −rx∗ −βx∗ 0

b− βv∗ bx∗

v∗ −dv∗

0 pz∗ 0

 .

The characteristic equation in E∗ is f(λ) = λ3 + a1λ
2 + a2λ+ a3 where:

a1 = −(A+D), a2 = AD − EF −BC, a3 = AEF,

A =
βq − pr

p
, B =

β

pr
(βq − pr) C =

bp− βq

p
,

D =
b

qr
(βq − pr), E =

−qd

p
F =

p2

qd
((b− βq

p
)(1− βq

pr
)− eq

p
).

By the Routh-Hurwitz ceriterion, all roots of f(λ) have negative real
parts if and only if:

H1 =
∣∣a1∣∣ > 0, H2 =

∣∣∣∣a1 a3
1 a2

∣∣∣∣ > 0, H3 =

∣∣∣∣∣∣
a1 a3 0
1 a2 0
0 a1 a3

∣∣∣∣∣∣ = a3H2 > 0.

Because F = pz∗ > 0 and we assumed that b > b∗, r > β and p > q so

a1 = −(A+D) = −(βq − pr)(
1

p
+

b

qr
) > 0,

a3 = AEF = (
βq − pr

p
)(−dq

p
)(
p2

qd
((b− βq

p
)(1− βq

pr
)− eq

p
) > 0.

So all roots of f(λ) have negative real parts if and only if a1a2− a3 > 0.
If we take Φ(b) = a1a2 − a3, then

Φ(b) =
pr − βq

p3q2r2
(ξ1b

2 + ξ2b+ ξ3), (2.2)

where

ξ1 = p4qr + p4r2 − p3q2β − p3qrβ, ξ3 = q4β3r − pq3r2β2,

ξ2 = −pq(p2qre− (pr − βq)(p(r2 − βq)− β2q)). (2.3)

So all roots of f(λ) have negative real parts if and only if Φ(b) > 0.
Now we state the following theorem for the stability of E∗.

Theorem 2.4. Suppose that b > b∗ and Φ, ξ1, ξ2 and ξ3, are defined by
?? and ??. Then the following statements are valid.

I). If ξ1 > 0, then there exist a value b > 0, such that E∗ is asymp-
totically stable for b > b.
II). If ξ1 < 0 and ξ2 > 0 , there exist an interval I ⊂ R, which E∗ is
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asymptotically when b ∈ I.
III). If ξ1 < 0 and ξ2 < 0, E∗ is unstable for any b > 0.

Proof. Since we assumed that r > β and p > q so ξ3 < 0 and pr−βq
p3q2r2

> 0.

Now

ξ22 − 4ξ1ξ3 = p2q2[4pqrβ2(q + r)(pr − βq) + (p2qre − (pr − βq)(p(r2 −
βq)− β2q))2] > 0,

which implies Φ(b) = 0 has two real roots. If ξ1 > 0, then Φ(b) = 0
has a unique positive root b. So when b > max{b, b∗}, then Φ(b) > 0
therefore all roots of f(λ) have negative real parts which implies that
E∗ is asymptotically stable. If ξ1 < 0 and ξ2 > 0 then Φ(b) has two
positive roots 0 < b1 < b2. If b∗ < b1 then for b ∈ (b1, b2), Φ(b) > 0
and therefore E∗ is asymptotically stable. If b1 < b∗ < b2, then for
b ∈ (b∗, b2), Φ(b) > 0 and so E∗ is asymptotically stable. Otherwise if
ξ1 < 0 and ξ2 < 0, then for any b > 0, Φ(b) < 0. The above discussion
concludes that E∗ is unstable for any b > 0. □

2.2. Existence periodic solutions. We employ the Bendixon-Dulac
criterion for systems as follow. Define

f1 = rx− rx2 − βxv, f2 = bx− βxv − dvz − ev, f3 = pvz − qz.

So the system can be written as following form
dx
dt = f1(x, v, z)
dv
dt = f2(x, v, z)
dz
dt = f3(x, v, z).

Firs we take N1 =
1
xv . So we have

L1 =
∂

∂x
(N1f1) +

∂

∂v
(N1f2) = −(

r

v
+

b

v2
) < 0.

Similarly by N2 =
1
xz , we get

L2 =
∂

∂x
(N2f1) =

∂

∂z
(N2f3) = −r

z
< 0.

And by N3 =
1
vz ,

L3 =
∂

∂v
(N3f2) +

∂

∂z
(N3f3) = − bx

zv2
< 0.

Now the Bendixon-Dulac criterion satisfies, so there is no limit cycle or
homoclinic connections for the system under consideration.
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3. Analysis of delayed model

In this section we study behavior of the solutions of the presented
model. Fixed points and their stability will be considered. Because from
the biological view E∗ has more importance we study Hopf bifurcation
occurrence in E∗. In fact, the asymptotical stability of E∗ means that
we can control the size of the tumor and it is an important part of cancer
therapy. Also, the Hopf bifurcation means biologically that the tumor
will relapse exactly when it seems that the therapy is successful.
As our model is a system of delay differential equations first we show
that this model can be considered as functional differential equation.
Consider the delay differential equation

ẋ = g(x(t), x(t− r)), (3.1)

where r ≥ 0 is a real number. Suppose that C = C([−r, 0], Rn) is the
Banach space of continuous functions defined on the interval [−r, 0] with
value in Rn with the usual supremum norm. Let σ ∈ R, A > 0 and let
x ∈ C([σ − r, σ + A], Rn). For any t ∈ [σ, σ + A], let xt denote element
of C defined by xt(θ) = x(t + θ) for θ ∈ [−r, 0]. Now let D be an open
subset of C and f : D −→ Rn be a given function. the equation

ẋ = f(xt) (3.2)

(where the dot denotes the right-hand derivative) is called a functional
differential equation. Obviously if we take

f(ϕ) = g(ϕ(0), ϕ(−r)), ϕ ∈ C([−r, 0], Rn,

then Eq. ?? is special case of Eq. ??. So any delay differential equation
can be considered as a functional differential equation [?].
Based on the [?] the existence and uniqueness of the solutions of the
Eq.?? is guaranteed according to the uniqueness and existence theorems.
So we focus on the positivity and boundedness of the solutions of Eq.
?? . The next lemma guarantees that the solutions of (??) remain in
the feasible region.

Lemma 3.1. Suppose that (x(t), v(t), z(t)) is a solution of system (??).
If x(0) ⩾ 0, v(0) ⩾ 0, z(0) ⩾ 0, then x(t) ⩾ 0, v(t) ⩾ 0, z(t) ⩾ 0 for all
t ⩾ 0. Furthermore if 0 < x(0) < 1,0 < v(0) < 1 and 0 < z(0) < 1 then
0 < x(t) < 1, lim supt→∞ v(t) < b

e and z(t) remains bounded.

Proof. From the first equation of (??) we get x(t) = x(0)e
∫ t
0 (r−rx(s)−βv(s))ds.

Since x(0) ⩾ 0, it implies that x(t) ⩾ 0 for t ⩾ 0.

Similarly from third equation we have z(t) = z(0)e
∫ t
0 (pv(s)−q)ds. Since

we take z(0) ⩾ 0, so z(t) ⩾ 0 for t ⩾ 0. The second equation implies
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that

v(t) = e−
∫ t
0 (βx(s−τ)+dz(s)+e)ds[v(0)+b

∫ t

0
x(s−τ)e

∫ s
0 (βx(u−τ)+dz(u)+e)duds].

Because v(0) ⩾ 0 and x(t) ⩾ 0, so v(t) ⩾ 0 for t ∈ [0, τ ]. By induction,
we have v(t) ≥ 0 for t ≥ 0.
Furthermore suppose that 0 < x(0) < 1, 0 < v(0) < 1 and 0 < z(0) < 1.
Because the initial values of each component of solutions is non-negative,
so the solutions remain non-negative. We have x′(t) = rx(1−x)−βxv ⩽
rx(1−x) and x(0) ⩽ 1. So by the comparison theorem for ODEs we get
x(t) ⩽ 1. Similarly because x(t) ⩽ 1, v′(t) = bx(t−τ)−βxv−dvz−ev ⩽
bx − ev ⩽ b − ev. So by the comparison theorem , we get v(t) ⩽
b
e + v(0)exp(−et). Taking lim sup both sides yield lim supt→∞ v(t) ⩽ b

e .
Moreover z is bounded. Becuse if z(t) −→ ∞ as t −→ ∞, then as x < 1,
so from second equation we get v′(t) < b − dvz. since z −→ ∞, so
v′(t) −→ −∞. Therefore there exists t1 > 0 such that pv − q < 0 for
t > t1. Now from the third equation

z(t) = z(0)e
∫ t
0 (pv−q)ds = z(0)[e

∫ t1
0 (pv−q)ds+

∫ t
t1
(pv−q)ds

].

Becuse for t > t1, pv − q < 0, so e
∫ t
t1
(pv−q)ds ≤ 1. Thus we get

z(t) ≤ z(0)e
∫ t1
0 (pv−q)ds ≤ z(0)M , where M = e

∫ t1
0 (pv−q)ds. This is a

contradiction since we assumed that z −→ ∞, so z(t) remains in the
bounded region. □

3.1. Stability of E∗ and Hopf bifurcation. By the transformation
u1 = x− x∗, u2 = v − v∗, u3 = z − z∗, (??) is changed to

dU

dt
= M1U(t) +M2U(t− τ) + f(u1, u2, u3)

where U = (u1, u2, u3)
T ,

f(u1,u2,u3) =

 −βu1u2 − ru21
−βu1u2 − du2u3

pu2u3

 ,M1 =

 A B 0
C − b D E
0 F 0

 ,

M2 =

0 0 0
b 0 0
0 0 0


and A,B,C,D,E, F are same as the previous section. The characteristic
equation corresponding to linearized system is ξ(λ) = det(λI − M1 −
M2e

−λτ ) = 0. So the characteristic equation can be written as

ξ(λ) = λ3 +m1λ
2 +m2λ+m3 + n1λe

−λτ = 0, (3.3)

m1 = −(A+D) m2 = AD+bB−BC−EF, m3 = AEF, n1 = −bB.
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Clearly, iω(ω > 0) is a root of ξ(λ) = 0 if and only if

−iω3 −m1ω
2 + im2ω +m3 + in1ω(coswτ − i sinωτ) = 0.

Separating the real and imaginary part, we have{
−m1ω

2 +m3 = −n1ω sinωτ
−ω3 +m2ω = −n1ω cosωτ.

Adding the squares of both equations together gives

ω6 + (m2
1 − 2m2)ω

4 + (m2
2 − 2m1m3 − n2

1)ω
2 +m2

3 = 0. (3.4)

We take

z = ω2, p = m2
1 − 2m2, q = m2

2 − 2m1m3 − n2
1, r = m2

3.

So the equation (??) becomes

h(z) = z3 + pz2 + qz + r = 0. (3.5)

Because h(0) = m2
3 > 0 and limz→−∞h(z) = −∞ so h(z) = 0 has at

least one negative root. Suppose the equation (??) has positive roots.
Without loss of generality, we assume that it has two positive roots,
denoted by z1 and z2 respectively. So the equation (??) has two positive
roots, say ω1 =

√
z1 and ω2 =

√
z2. Take

τ jk =
1

ωk
arccos[

n1ω
4
k −m2n1ω

2
k

n2
1ω

2
k

] +
2πj

ωk
, k = 1, 2, j = 1, 2, ... (3.6)

then ±iωk is a pair of purely imaginary roots of (??) with τ = τ jk , k =

1, 2, j = 1, 2, ... . Obviously limj→∞ τ jk = ∞. Now we can define

τ0 = τ j0k0 =
k

min
j

τ jk , ω0 = ωk0 . (3.7)

For τ = 0 the equation (??) becomes

λ3 +m1λ
2 + (m2 + n1)λ+m3 = 0. (3.8)

As we saw in the previous section because m1 > 0,m3 > 0, by the
Routh-Hurwits criterion, all roots of (??) have negative real parts, if
and only if Φ(b) > 0. We take tree conditions:
(Q1):ξ1 > 0 and b > max{b, b∗}.
(Q2):ξ1 < 0, ξ2 > 0, b∗ < b1 and b ∈ (b1, b2).
(Q3): ξ1 < 0, ξ2 > 0, b1 < b∗ < b2 and b ∈ (b∗, b2).
b∗, b, b1, b2 are defined in the previous section. Because r = m2

3 ⩾ 0, so
from [?] we have the following lemma.

Lemma 3.2. (see [?]). Suppose that one of conditions Q1, Q2 or Q3 is

true. And take z̄1 =
−p+

√
∆

3 . Then

(i) if ∆ = p2 − 3q < 0, then all roots of the equation (??) have negative



Mathematical Analysis for Oncolytic Virotherapy 563

real part for all τ ⩾ 0
(ii) if z̄1 > 0 and h(z̄1) ⩽ 0, than all roots of equation (??) have negative
real part when τ ∈ [0, τ0).

Let λ(τ) = α(τ) + iω(τ) be the root of the equation (??) satisfying
α(τ0) = 0 and ω(τ0) = ω0, z0 = ω2

0. To arise Hopf bifurcation we need

h′(z0) ̸= 0. Suppose that z̄1 =
−p+

√
p2−3q
3 , z̄2 =

−p−
√

p2−3q
3 be the roots

of h′(z) = 3z2 + 2pz + q = 0. If z̄1 > 0 and h(z̄1) < 0, then because
h(0) = m2

3 > 0 and limz→−∞h(z) = −∞ so z̄1 and z̄2 are local minimum
and maximum of h(z) respectively. In this case it is clear that h(z) has
two distinct positive roots z1, z2 and moreover h′(z1) ̸= 0, h′(z2) ̸= 0.
Now we differentiate both sides of the equation (??) with respect to τ ,
and obtain

{3λ2 + 2m1λ+m2 + [n1 − τn1λ]e
−λτ}dλ

dτ
= n1λ

2e−λτ .

Solving for the derivative

(
dλ

dτ
)−1 =

(3λ2 + 2m1λ+m2)e
λτ

n1λ2
+

n1 − τn1λ

n1λ2
.

Then

Sign
dReλ(τ0)

dλ
= Sign{Re(

dλ

dτ
)−1|τ=τ0} = Sign{ 1

n2
1ω

2
0

h′(z0)} ≠ 0.

So the transversality condition holds and the system undergoes Hopf
bifurcation at τ = τ0. We state the results above as the next theorem.

Theorem 3.3. Suppose that one of the conditions Q1, Q2, Q3 holds.
(i) If ∆ = p2− 3q < 0, then all roots of equation (??) have negative real
parts. So E∗is asymptotically stable.
(ii) If ∆ = p2 − 3q > 0, z̄1 > 0 and h(z̄1) < 0, then there exist a
positive value τ0, such that all roots of the equation (??) have negative
real parts when τ ∈ [0, τ0). At τ = τ0, the equation (??) has a pair of
simple purely imaginary roots, ±iω0, and all other roots have negative
real parts. Furthermore,

Sign{dα(τ0)
dτ } = Sign{h′(z0)} ≠ 0.

4. Numerical simulation and conclusion

In this paper, we studied our proposed mathematical model and ob-
tained some conditions for stability of E∗ in terms of parameters. When
E∗ is asymptotical stable it means that the tumor size remains in con-
trolled size and virotherapy may be successful. The biological impor-
tance of theorem (??) is that determines conditions such that E∗ is
asymptotically stable. If we use an oncolytic virus with a certain burst
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Figure1.jpg

Figure 1. solution of system (??) for initial values x(0) =
0.16, v(0) = 0.85, z(0) = 13.328.(a): E∗ is asymptoticaly stable for
τ = 25.2 < τ0. (b):E

∗ is unstable when τ = 36.65 > τ0

size such that provides part (i) of theorem, then we will have a good
controlling on the size of the tumor; however, sometimes it is impos-
sible. In this case, we may have a Hopf bifurcation around E∗ which
means that after a time, the tumor will relapse and therapy fails. As
a result, it is better to avoid happening the first Hopf bifurcation at τ0
. So we should use oncolytic viruses in which the time to complete the
lytic cycle is in the interval τ ∈ [0, τ0). Thus the burst size and delay
parameter must be controlled carefully. This may be possible by genetic
engineering.
Now to demonstrate the model behavior, we choose a set of parameters
based on the [?], and simulate the stability and Hopf bifurcation in E∗.
We take p = 0.04, q = 0.036, r = 0.1, e = 0.01, β = 0.09, b = 10, d = 0.16.
So the equilibrium point is E∗ = (x∗, v∗, z∗) = (0.19, 0.9, 13.02). We ob-
tain h(z) = r + qz + pz2 + z3 = 2.03195× 10−6 − 0.022z + 4.30z2 + z3,
∆ = p2−3q ≈ 18.64 > 0, z̄1 ≈ 0.0025 > 0 and h(z̄1) ≈ −0.00002699 < 0.
h(z) has two positive roots: z1 ≈ 0.000092, z2 ≈ 0.005. By (??) and (??),
we get τ0 ≈ 31.659, ω0 = 0.0713, z0 = 0.005 and h′(z0) ≈ 0.02 > 0. So

Signdλ(τ0)
dτ = Signh′(z0) > 0. On the other hand ξ1 ≈ 6.61504× 10−9 >

0. So condition Q1 holds and therefore by theorem (??), the positive
equilibrium E∗ is asymptotically stable when τ ∈ [0, 31.659). When



Mathematical Analysis for Oncolytic Virotherapy 565

τ ≈ 31.659, the system undergoes Hopf bifurcation and E∗ becomes un-
stable.
From the biological view, these results mean that, if the time to complete
the lytic cycle of the virus be less than 31.659, the tumor remains in con-
trolled size, while therapy can fail when τ > τ0. We simulate a solution
of system (??) in the figure (??) for initial values x(0) = 0.16, v(0) = 0.85
and z(0) = 13.328.
Note that we studied the immune system effect in the virus-specific
CTLs role, however, one can study the role of tumor-specific CTLs in
the outcome of virotherapy.
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