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Abstract. In this paper, we consider the progressively Type-II
censoring and the sample size is assumed as a random variable from
a Poisson distribution. The optimal sample size is determined by
considering a cost constraint. Towards this end, we first introduce
a cost function and then the optimal parameter of Poisson distribu-
tion is obtained so that the cost function does not exceed a pre-fixed
value. In the following, through a simulation study, the results are
evaluated. Finally, the conclusion of the article is presented.
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1. Introduction

The scheme of progressively Type-II censoring is an important method of
obtaining data in lifetime studies. It allows the experimenter to remove
units from a life test at various stages during the experiment. Under the
progressively Type-II censoring scheme, n units are placed on a lifetime
test. At the first failure time, R1 surviving items are randomly with-
drawn from the test. At the second failure time, R2 surviving items are
selected at random and taken out of the experiment, and so on. Finally,
at the time of the m-th failure, the remaining Rm = n−m−

∑m−1
i=1 Ri

objects are removed. If the failure times are based on an absolutely
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continuous cumulative distribution function (cdf) Fθ(·) and probabil-
ity density function (pdf) fθ(·), and denote the i-th failure time by

XR̃
i:m:n, then the random variables XR̃

1:m:n, . . . , X
R̃
m:m:n are called pro-

gressively Type-II censored order statistics (PCOs) based on censoring

scheme R̃ = (R1, . . . , Rm), where n = m +
∑m

j=1Rj . For notational

simplicity, hereafter we use Xi:m:n instead of XR̃
i:m:n, for 1 ≤ i ≤ m. The

marginal pdf of the i-th failure time, Xi:m:n, 1 ≤ i ≤ m, is given by (see
for example, Balakrishnan and Aggarwala [3])

fXi:m:n;θ(x) = ci−1fθ(x)

i∑
t=1

at,i;n(F̄θ(x))
γt;n−1, F−1(0+) < x < F−1(1−),

(1.1)
where F̄θ(x) = 1 − Fθ(x) is the survival function of X-sample and the
quantile function F−1

θ : [0, 1] → R is defined by

F−1
θ (y) = inf{x : Fθ(x) ≥ y}, y ∈ (0, 1),

and F−1
θ (0+) = limy→0+ F−1

θ (y), F−1
θ (1−) = limy→1− F−1

θ (y). Also,
n = m +

∑m
j=1Rj , m,n ∈ N, γi;n = m − i + 1 +

∑m
j=iRj , ci−1;n =∏i

j=1 γj;n and at,i;n =
∏i

j=1,j ̸=t
1

γj;n−γt;n
, 1 ≤ t ≤ i ≤ m. For a detailed

discussion of progressive censoring, we refer the reader to Balakrishnan
and Aggarwala [3] Balakrishnan [2], Balakrishnan and Cramer [4] and
the references contained therein.

Optimization in censoring schemes is one of the issues that so far has
been studied by many researchers. For example, Ebrahimi [12] investi-
gated determining the sample size for a Hybrid life test which minimizes
the expected cost. Pham [15] taking into account a cost function based
on the time of the experiment, determined the optimal size of samples
for the exponential distribution. Ng et al. [14] determined the opti-
mal censoring plan in progressively Type II censoring based on some
criteria such as the cost of experiment. Doostparast and Balakrishnan
[11] discussed the optimal sample size for estimating the mean based on
a criterion involving a cost function as well as the Fisher information
based on records arising from a random sample. Cordeiro and Pham
[10] introduced a new cost function that, in addition to the duration
of the experiment, also considers the reliability of the test. Then, they
determined the optimal number of samples for Type-II censoring, with
r = 2 failures, for Weibull distribution. The optimization problem of
sample size allocation when the competing risks data are from a pro-
gressive type-II censoring in a constant-stress accelerated life test with
multiple levels, is studied by Huang andWu [13]. Basiri [6] Obtained the
optimal number of failures in Type-II censoring by considering Bayesian
prediction problem and cost function. Basiri and Beigi [8] obtained op-
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timal censoring scheme in progressively Type-II censoring with binomial
removals in Bayesian two-sample prediction problem.

In some applications, such as clinical trials and quality control, it is
almost impossible to have a fixed sample size all the time because some
observations may be missing for various reasons. In other words, the
sample size is a random variable. Some examples in this area can be
found in Srivastava [17]. Ahmadi et al. [1] investigated the optimal
size of samples based on a cost function for the Bayesian prediction
when the information sample size is fixed as well as a random variable.
They obtained the parameter of distribution of the information sample
size, such that the point predictor of a future order statistic has mini-
mum mean squared prediction error when the total cost of experiment
is bounded. Motivated by they work, the aim of this paper is to find the
optimal sample size in progressively Type-II censoring so that the cost
is bounded. We assume that the sample size is a random variable from
a Poisson distribution. Then, we introduce a cost function and then the
optimal parameter of the distribution of sample size is determined such
that the cost function does not exceed a pre-determined value.

The remainder of this paper is organized as follows. In Section 2,
first, we introduce a cost function that is a basic tool for finding the
optimal sample size. Then, the optimal parameter of the distribution of
sample size is determined such that the cost function does not exceed
a pre-determined value. We consider some different censoring schemes
and obtain the results. Numerical computations are given in Section 3.
Finally, a conclusion is presented in Section 4.

2. Main results

Throughout this paper, let X̃ = (X1:m:N , · · · , Xm : m : N) be the
progressively Type-II censored order statistics from a sample of size
N of independent and identically distributed (iid) continuous random
variables from the one-parameter exponential distribution, denoted by
Exp(θ), with probability density function (pdf) and cumulative distri-
bution function (cdf) given by

fθ(x) = θe−θx, and Fθ(x) = 1− e−θx, x > 0, θ > 0, (2.1)

respectively. Here, N is assumed to be a Poisson random variable double
truncated at points m and M , (m < M), with parameter θ, denoted by
Poi(θ;m;M), i.e.,

P (N = n) =
λn

n!
∑M

j=m
λj

j!

, m ≤ n ≤ M. (2.2)

So, P (N ≥ i) = 1, for 1 ≤ i ≤ m.
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In this paper we consider a cost function as

EC(N) = c0 + cuEN (N)− ps (EN (N)−m) + ctEN (E(Xm:m:N |N = n))

+cvEN (V (Xm:m:N |N = n)) + cR {F (EN (E(Xm:m:N |N = n)))} ,
(2.3)

where c0, cu, ps, ct, cv and cR are the sampling set-up cost or any other
related cost involved in sampling, cost per unit, the price of second-hand
units, cost of total time on test, cost of expected testing time variance
and cost of the risk of testing units fail before the expected test time,
respectively. It is important to mention that this cost function is an
adopted model proposed by Cordeiro [9] and Cordeiro and Pham [10].

From (1.1), (2.1) and (2.2) and following Basiri and Ahmadi [7], the
marginal density function of Xm:m:N, when N is a Poisson random vari-
able, can be written as

fXm:m:N ;θ(x) =
1

P (N ≥ m)

∞∑
n=i

m∑
t=1

cm−1;nfθ(x)at,m;n(F̄θ(x))
γt;n−1P (N = n)

=
θ∑M

j=m
λj

j!

M∑
n=m

m∑
t=1

cm−1;nat,m;ne
−θxγt;n λ

n

n!
.

Assuming N = n, from Balakrishnan and Aggarwala [3] we have

E(Xm:m:N |N = n) =
1

θ
g(m,n) and V (Xm:m:N |N = n) =

1

θ2
h(m,n),

where

g(m,n) =

m∑
t=1

1

n−
(∑t−1

l=0 Rl

)
− t+ 1

, (2.4)

and

h(m,n) =
m∑
t=1

1(
n−

(∑t−1
l=0 Rl

)
− t+ 1

)2 . (2.5)

So, we conclude that

EN (E(Xm:m:N |N = n)) =
1

θ
G(λ;m,M) and EN (V (Xm:m:N |N = n)) =

1

θ2
H(λ;m,M),(2.6)

where

G(λ;m,M) =
1∑M

j=m
λj

j!

M∑
n=m

g(m,n)
λn

n!
,

and

H(λ;m,M) =
1∑M

j=m
λj

j!

M∑
n=m

h(m,n)
λn

n!
.
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Also, it is easy to show that

EN (N) = λ

∑M−1
j=m−1

λj

j!∑M
j=m

λj

j!

= A(λ;m,M) say. (2.7)

By substituting (2.6) and (2.7) into (2.3), the cost function can be rewrit-
ten as

EC(N) = c0 + cuA(λ;m,M)− ps (A(λ;m,M)−m) +
ct
θ
G(λ;m,M)

+
cv
θ2

H(λ;m,M) + cR [1− exp{−G(λ;m,M)}] . (2.8)

From (2.8) we can see that EC(N) depends on the unknown parameter
θ, and therefore it can be replaced by its preliminary estimator based
on past experiments and pre-information.

In the sequel, we try to find optimal value for the sample size such
that and EC(N) ≤ c∗, where c∗ is a pre-fixed value. To do this, we
consider the following m different censoring schemes as

R̃(k) = (R1, · · · , Rk, · · · , Rm),

where Rk = N −m and Ri = 0, for i ̸= k, i, k = 1, · · · ,m.
We have computed the values of EC(N) for some selected choices of

θ, m, R̃ and λ when M = 10, c0 = 10, cu = 5, ps = 1, ct = 5, cv = 2
and cR = 1. The results are reported in Table 1. Also, values of EC(N)

for different choices of θ, m, R̃(k), k = 1, · · · ,m, and λ are plotted in
Figure 1, when M = 10, c0 = 10, cu = 5, ps = 1, ct = 5, cv = 2, cR = 1
and c∗ = 50. From Table 1 and Figure 1, by an empirical evidence, we
find the following points:

• The cost function EC(N) is an increasing function of m but a
decreasing function of θ, when other components are fixed, as
we expected.

• Considering R̃(m) = (0, · · · , 0, N − m), or Type-II censoring,
leads to better results than other censoring schemes.

In Table 2, we have presented the values of λ which the condition
EC(N) ≤ c∗ is satisfied, say λopt, when M = 10, c0 = 10, cu = 5,
ps = 1, ct = 5, cv = 2, cR = 1 and c∗ = 50 for different values of
θ, m and R̃(k), k = 1, · · · ,m. In Table 2, dash (-) means that there
is no λ which satisfies the condition EC(N) ≤ c∗. Moreover, we find
that the optimal values are increasing with respect to θ when all other
components are held fixed.
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Figure 1. Plots of EC(N) for some selected choices of

θ, m, R̃(k) and λ when M = 10, c0 = 10, cu = 5, ps = 1,
ct = 5, cv = 2, cR = 1 and c∗ = 50.
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Table 1. Values of EC(N) for some selected choices of θ, m and

R̃(k) and λ when M = 10, c0 = 10, cu = 5, ps = 1, ct = 5, cv = 2 and

cR = 1.

θ m R̃(k)/ λ 1 2 3 4 5 6 7 8 9 10

0.5 3 R̃(1) 55.897 57.073 58.646 60.603 62.815 65.073 67.184 69.031 70.581 71.854

R̃(2) 55.172 55.588 56.400 57.635 59.206 60.936 62.636 64.176 65.502 66.611

R̃(3) 52.411 50.149 48.469 47.511 47.275 47.610 48.291 49.113 49.942 50.706

5 R̃(1) 71.115 71.977 73.051 74.320 75.718 77.152 78.531 79.793 80.908 81.871

R̃(2) 70.993 71.717 72.638 73.745 74.982 76.262 77.503 78.647 79.662 80.544

R̃(3) 70.776 71.260 71.922 72.760 73.731 74.765 75.788 76.745 77.607 78.363

R̃(4) 70.292 70.259 70.379 70.672 71.121 71.681 72.293 72.908 73.491 74.023

R̃(5) 68.430 66.510 64.763 63.270 62.089 61.231 60.664 60.329 60.163 60.113

1 3 R̃(1) 38.751 40.130 41.916 44.083 46.487 48.910 51.153 53.101 54.726 56.055

R̃(2) 38.455 39.521 40.990 42.852 44.983 47.177 49.240 51.053 52.579 53.835

R̃(3) 37.431 37.489 38.003 39.007 40.417 42.043 43.682 45.190 46.501 47.605

5 R̃(1) 50.959 51.871 53.000 54.328 55.787 57.278 58.708 60.016 61.169 62.163

R̃(2) 50.906 51.756 52.818 54.074 55.460 56.882 58.251 59.505 60.614 61.571

R̃(3) 50.814 51.561 52.511 53.651 54.922 56.236 57.509 58.681 59.721 60.623

R̃(4) 50.617 51.154 51.881 52.795 53.847 54.962 56.061 57.087 58.007 58.812

R̃(5) 49.932 49.767 49.791 50.026 50.451 51.013 51.647 52.293 52.912 53.480

2 3 R̃(1) 32.200 33.662 35.534 37.787 40.271 42.762 45.060 47.050 48.708 50.061

R̃(2) 32.066 33.385 35.110 37.221 39.576 41.959 44.170 46.095 47.705 49.022

R̃(3) 31.635 32.520 33.828 35.553 37.576 39.691 41.697 43.471 44.972 46.211

5 R̃(1) 43.074 44.006 45.159 46.513 47.997 49.513 50.966 52.293 53.463 54.471

R̃(2) 43.049 43.952 45.073 46.393 47.842 49.325 50.749 52.050 53.198 54.188

R̃(3) 43.006 43.862 44.931 46.196 47.591 49.023 50.401 51.6633 52.778 53.742

R̃(4) 42.918 43.679 44.647 45.808 47.103 48.442 49.739 50.933 51.992 52.910

R̃(5) 42.633 43.099 43.767 44.636 45.656 46.749 47.836 48.855 49.774 50.580

3. Simulation study

In this section, a simulation study is carried out in order to assess the
performances of the results in the paper. Based on the algorithm pro-
posed by Balakrishnan and Sandhu [5], we have the following algorithm.

Algorithm 3.1. Suppose θ, m, M , c0, cu, ps, ct, cv, cR, c
∗ and the

censoring scheme R̃ are all given. Then:

(1) Choose λopt from the condition EC(N) ≤ c∗.
(2) Generate N from the distribution Poi(λopt;m,M).
(3) Generate m iid random variables W1, . . . ,Wm from the uniform

distribution U(0, 1).

(4) Take Vi = W

1
i+

∑m
k=m−i+1

Rk

i for i = 1, · · · ,m.
(5) Set Ui = 1−

∏m
k=m−i+1 Vk for i = 1, · · · ,m.
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(6) Obtain the progressively Type-II censored order statistics by set-
ting Xi:m:n = F−1

θ (Ui) for i = 1, · · · ,m, when F−1
θ (·) is the

quantile function of the exponential distribution with parameter
θ.

(7) Repeat the Steps 2-6 for B = 10000 times and let N (j) and

X
(j)
i:m:N be the results obtained from Steps 2 and 6 in the jth

iteration, j = 1, . . . , B.
(8) Then, calculate the estimated expected cost functions (EEC) as

EEC(N) = c0 +
cu
B

B∑
j=1

N (j) − ps

 1

B

B∑
j=1

−m

+
ct
θ
g′(m,N)

+
cv
θ2

h′(m,N) + cR [1− exp{−g′(m,N)}] ,

where

g′(m,N) =
1

B

B∑
j=1

X
(j)
i:m:N , k′(m,N) =

1

B

B∑
j=1

(
X

(j)
i:m:N

)2
,

and

h′(m,N) = k′(m,N)−
(
g′(m,N)

)2
.

Based on Algorithm 3.1 and the results in Table 2, we have computed
the values of EEC(N) for different values of θ, m and R̃, when M = 10,
c0 = 10, cu = 5, ps = 1, ct = 5, cv = 2, cR = 1 and c∗ = 50. For Step 1
we have considered the largest values of λopt in Table 2. The results are
tabulated in Table 3. From Table 3, it is observed that for most cases
EEC(N) ≤ c∗.

Table 2. Values of EEC(N) for different values of θ, m and R̃,

when M = 10, c0 = 10, cu = 5, ps = 1, ct = 5, cv = 2, cR = 1 and c∗ = 50.

m R̃(k) θ = 0.5 θ = 1 θ = 2

3 R̃(1) - 48:881 48:648

R̃(2) - 50:013 50:202

R̃(3) 61:250 53:721 53:061

5 R̃(1) - - 44:421

R̃(2) - - 44:378

R̃(3) - - 44:298

R̃(4) - - 46:504

R̃(5) - 50:426 49:891
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Table 3. Values of λopt for some selected choices of R̃(k), k =

1, 2, 3,when m = 3, M = 6, c0 = 10, cu = 5, ps = 1, ct = 5, cv = 2,

cR = 1 and c∗ = 18700.

R̃(k) λopt

R̃(1) 4.293

R̃(2) 1.001

R̃(3) -

4. Example

In this example, we present the analysis of real data, partially consid-
ered in Proschan [16] for illustrative purposes. Records were kept for the
time of successive failures of the air conditioning system of each member
of a eet of Boeing 720 jet air planes. The intervals between successive
failures for a plane are listed in order of occurrence are

194, 15, 41, 29, 33, 181.

Ahmadi et al. [1] have used these data set as the exponential random
variables with parameter θ = 0.0121. Let us assume in this example,
m = 3, M = 6, c∗ = 18700, c0 = 10, cu = 5, ps = 1, ct = 5, cv = 2
and cR = 1. Also, we consider the censoring schemes R̃(k), k = 1, 2, 3.
Values of λopt are presented in Table 4. From Table 4 we can observed

that for R̃(3) = (0, 0, N −m) there is no λ which satisfies the condition
EC(N) ≤ c∗.

5. Conclusion

Determining the optimal sample size is one of the issues that has
been studied by many researchers so far. In some applications it is
almost impossible to have a fixed sample size all the time because some
observations may be missing for various reasons. In other words, the
sample size is random variable. In this paper, we first introduce a cost
function and then assuming the size as a random variable from a Poisson
distribution, the optimal sample size is investigated. The results show
that considering the Type-II censoring, choosing small values for m and
λ but large values for θ leads to better results.

Acknowledgement

The author would like to thank the referee and the associate editor
for valuable suggestions.

References

[1] J. Ahmadi, E. Basiri and S.M.T.K. MirMostafaee, Optimal random sam-
ple size based on Bayesian prediction problem of exponential lifetime and



Optimization in progressively Type-II censoring with random sample size 517

application to real data. Journal of the Korean Statistical Society, 45(2)
(2016), 221–237.

[2] N. Balakrishnan, Progressive censoring methodology: An appraisal, Test,
16(2007), 211–259.

[3] N. Balakrishnan, and R. Aggarwala, Progressive Censoring: Theory, Meth-
ods, and Applications, Birkhäuser, Boston, 2000.

[4] N. Balakrishnan, and E. Cramer, The Art of Progressive Censoring,
Birkhauser, New York, 2014.

[5] N. Balakrishnan, and R. A. Sandhu, A simple simulational algorithm for
generating progressive Type-II censored samples, The American Statisti-
cian, 49(2) (1995), 229–230.

[6] E. Basiri, Optimal Number of Failures in Type II Censoring for Rayleigh
Distribution, Journal of Applied Research on Industrial Engineering, 4(1)
(2017), 67–74.

[7] E. Basiri, and J. Ahmadi, Prediction intervals for generalized order sta-
tistics with random sample size, Journal of Statistical Computation and
Simulation, 85 (2015), 1725–1741.

[8] E. Basiri and S. Beigi, The optimal scheme in type II progressive censoring
with random removals for the Rayleigh distribution based on Bayesian two-
sample prediction and cost function, Journal of Advanced Mathematical
Modeling, 10(1) (2020), 135–7157.

[9] J. B. Cordeiro, Optimal design of life testing for Weibull distribution life-
time units (Doctoral dissertation, Rutgers University-Graduate School-
New Brunswick), 2016.

[10] J. B. Cordeiro and H. Pham, Optimal design of life testing cost model for
Type-II censoring Weibull distribution lifetime units with respect to un-
known parameters. International Journal of System Assurance Engineering
and Managemen, 8(1) (2017), 28–32.

[11] M. Doostparast and N. Balakrishnan, Optimal sample size for record data
and associated cost analysis for exponential distribution. Journal of Sta-
tistical Computation and Simulation, 80(12) (2010), 1389–1401.

[12] N. Ebrahimi, Determining the sample size for a hybrid life test based on
the cost function. Naval Research Logistics (NRL), 35(1) (1988), 63–72.

[13] S. R. Huang and S. J. Wu, Optimal sample size allocation for accelerated
life test under progressive type-II censoring with competing risks. Journal
of Statistical Computation and Simulation, 87(1) (2017), 1–16.

[14] H. K. T. Ng, P. S. Chan and N. Balakrishnan, Optimal progressive censor-
ing plans for the Weibull distribution. Technometrics, 46 (2004), 470–481.

[15] H. O. A. N. G. Pham, Optimal design of life testing for ULSI circuit
manufacturing. IEEE transactions on semiconductor manufacturing, 5(1)
(1992), 68–70.

[16] F. Proschan, Theoretical explanation of observed decreasing failure rate.
Technometrics, 5 (1963), 375–383.

[17] R. C. Srivastava, Estimation of probability density function based on ran-
dom number of observations with applications. International Statistical
Review/Revue Internationale de Statistique, (1973), 77–86.


	1.  Introduction
	2. Main results
	3. Simulation study
	4. Example
	5. Conclusion
	Acknowledgement
	References

