Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran <http://cjms.journals.umz.ac.ir> ISSN: 2676-7260 CJMS. $11(2)(2022)$, 439-447 (RESEARCH PAPER)

Tauberian theorems for the weighted mean methods of summability in intuitionistic fuzzy normed spaces

Reha Yapali^{[1](#page-0-0)} and Harun Polat Mathematics Department , Mus Alparslan University, Turkey

Abstract. In this paper, weighted mean methods of summability are given in intuitionistic fuzzy normed spaces IF NS. Also, some Tauberian conditions are defined for the weighted mean methods of summability in IFNS.

Keywords: intuitionistic fuzzy normed space, weighted mean summability, slow oscillation, Tauberian theorem

2020 Mathematics subject classification: 03E72, 40A05, 40E05, 40G05

1. INTRODUCTION

Many mathematicians from various branches have studied fuzzy sets, which were given by Zadeh^{[\[1\]](#page-7-0)} in 1965 as a generalization of classical sets. In classical sets, elements in the universal set are divided crisply into two groups as members and nonmembers, and partial membership is not allowed. By giving degrees of membership between 1 and 0, fuzzy sets, unlike classical sets, allow partial membership and take into account all items in the universe. Fuzzy sets are used in many real-world situations to deal with problems of ambiguity and indefiniteness because of their ability to handle unclassifiable data. In 1983, Atanassov $[2, 3]$ $[2, 3]$, inspired by fuzzy sets, considered partial non membership and expanded fuzzy sets to intuitionistic fuzzy sets. Following Atanassov's introduction, concepts of intuitionistic fuzzy metric[\[4\]](#page-7-3) and intuitionistic fuzzy

 1 Corresponding author: reha.yapali@alparslan.edu.tr Received: 29 July 2021 Revised: 04 October 2021 Accepted: 09 October 2021

439

norm $(IF\text{-norm})[5, 6]$ $(IF\text{-norm})[5, 6]$ $(IF\text{-norm})[5, 6]$ are defined, and topics related to them are researched. Convergence of sequences in IFNS is studied in particular, and various forms of convergence (e.g., statistical and ideal convergence) are applied to sequences in $IFNS$ to grasp the convergence [\[7,](#page-7-6) [8,](#page-7-7) [9,](#page-7-8) [10\]](#page-7-9).

Talo and Yavuz[\[11\]](#page-7-10) recently introduced Cesaro summability of sequences in $IFNS$ and provided Tauberian theorems for Cesaro summability process in $IFNS$, by which they initiated summability theory and Tauberian theory in IFNS. They also described the definition of slow oscillation in IFNS and gave related theorems in their analysis. After their study, the logarithmic summability of sequences in $IFNS$ is defined and a Tauberian theorem for logarithmic summability method is proved by Yavuz[\[24\]](#page-8-0). In this paper, we define the weighted mean summability of sequences in *IFNS* and prove a Tauberian theorem for the weigted mean summability method. Also, we give slowly oscillating type Tauberian conditions for which weighted mean summability yields convergence in IFNS.

Definition 1.1. [\[6\]](#page-7-5) The triplicate (M, μ, ν) is said to be an IF-normed space if M is a real vector space, and μ, ν are fuzzy sets on $M \times \mathbb{R}$ satisfying the following conditions for every $x, y \in M$ and $k, l \in \mathbb{R}$:

- (1) $\mu(x, k) = 0$ for $k \leq 0$,
- (2) $\mu(x,k) = 1$ for all $k \in \mathbb{R}^+$ if and only if $x = \theta$
- (3) $\mu(cx, k) = \mu\left(x, \frac{k}{|c|}\right)$ for all $k \in \mathbb{R}^+$ and $c \neq 0$,
- (4) $\mu(x+y, k+l) \ge \min{\mu(x, k), \mu(y, l)},$
- (5) $\lim_{k\to\infty}\mu(x,k)=1$ and $\lim_{k\to 0}\mu(x,k)=0$,
- (6) $\nu(x, k) = 1$ for $k \leq 0$,
- (7) $\nu(x, k) = 0$ for all $k \in \mathbb{R}^+$ if and only if $x = \theta$
- (8) $\nu(cx, k) = \nu\left(x, \frac{k}{|c|}\right)$ for all $k \in \mathbb{R}^+$ and $c \neq 0$,
- (9) $\max\{\nu(x,k), \nu(y, l)\}\geq \nu(x+y, k+l),$
- (10) $\lim_{k\to\infty}\nu(x,k)=0$ and $\lim_{k\to 0}\nu(x,k)=1$.

Indicate that we say (μ, ν) an IF-norm on M. Additionally, it is obvious that the functions $\mu(x, \cdot)$ and $\nu(x, \cdot)$ are both non-increasing and non-decreasing on R.

Example 1.2. Let $(M, \|\cdot\|)$ be a normed space and μ_0 , ν_0 be fuzzy sets on $M \times \mathbb{R}$ defined by

$$
\mu_0(x,k) = \begin{cases} 0, & k \le 0, \\ \frac{k}{k + ||x||}, & k > 0, \end{cases} \qquad \qquad \nu_0(x,k) = \begin{cases} 1, & k \le 0, \\ \frac{||x||}{k + ||x||}, & k > 0. \end{cases}
$$

Then (μ_0, ν_0) is IF-norm on M.

Definition 1.3. [\[6\]](#page-7-5) A sequence (x_n) is said to be convergent to $x \in M$ in the IF-normed space (M, μ, ν) and denoted by $x_n \to x$, if for each $k > 0$ and each $\varepsilon \in (0, 1)$ there exists $n_0 \in \mathbb{N}$ such that

$$
\mu(x_n - x, k) > 1 - \varepsilon
$$
 and $\nu(x_n - x, k) < \varepsilon$

for all $n \geq n_0$.

Definition 1.4. [\[6\]](#page-7-5) A sequence (x_n) in an IF-normed space (M, μ, ν) is said to be Cauchy if for each $k > 0$ and each $\varepsilon \in (0, 1)$ there exists $n_0 \in \mathbb{N}$ such that

$$
\mu(x_n - x_m, k) > 1 - \varepsilon
$$
 and $\nu(x_n - x_m, k) < \varepsilon$

for all $n, m \geq n_0$.

2. Theorems for the weighted mean summability method in intuitionistic fuzzy normed spaces

In IF− normed space, we now give the weighted mean summability and prove the related Tauberian theorems. Other work on weighted mean summability and convergence approaches on fuzzy settings can be found in [\[21,](#page-7-11) [22,](#page-8-1) [16,](#page-7-12) [17,](#page-7-13) [18,](#page-7-14) [15,](#page-7-15) [14,](#page-7-16) [12,](#page-7-17) [19,](#page-7-18) [13,](#page-7-19) [20\]](#page-7-20).

Definition 2.1. Let (x_n) be a sequence in $IF-$ normed space (M, μ, ν) . The weighted mean t_n of the sequence (x_n) is defined by

$$
t_n = \frac{1}{P_n} \sum_{k=0}^n p_k x_k
$$
 where $P_n = \sum_{k=0}^n p_k \to \infty$ $(n \to \infty)$.

 (x_n) is said to be weighted mean summable to $x \in M$ if

$$
\lim_{n \to \infty} x_n = x.
$$

In order to show that the weighted mean method in IF− normed space is regular, we give the following theorem.

Theorem 2.2. Let (x_n) be a sequence in (M, μ, ν) . (x_n) is weighted mean summable to x, if (x_n) is convergent to $x \in M$.

Proof. Let the sequence (x_n) converge to $x \in M$. Fix $t > 0$. For $\varepsilon > 0$

- There exists $n_0 \in \mathbb{N}$ such that $\mu\left(x_n x, \frac{t}{2}\right) > 1 \varepsilon$ and $\nu\left(x_n x, \frac{t}{2}\right) <$ ε for $n > n_0$.
- There exists $n_1 \in \mathbb{N}$ such that

$$
\mu\left(\sum_{k=1}^{n_0} p_k(x_k - x), \frac{P_n t}{2}\right) > 1 - \varepsilon \quad \text{and} \quad \nu\left(\sum_{k=1}^{n_0} p_k(x_k - x), \frac{P_n t}{2}\right) < \varepsilon
$$

for $n > n_1$, since we have

$$
\lim_{n \to \infty} \mu \left(\sum_{k=1}^{n_0} p_k (x_k - x), \frac{P_n t}{2} \right) = 1 \text{ and } \lim_{n \to \infty} \nu \left(\sum_{k=1}^{n_0} p_k (x_k - x), \frac{P_n t}{2} \right) = 0.
$$

442 R. Yapali, H. Polat

Hence we get

$$
\mu\left(\frac{1}{P_n}\sum_{k=1}^n p_k x_k - x, t\right) = \mu\left(\frac{1}{P_n}\sum_{k=1}^n p_k (x_k - x), t\right) = \mu\left(\sum_{k=1}^n p_k (x_k - x), P_n t\right)
$$

\n
$$
\geq \min\left\{\mu\left(\sum_{k=1}^{n_0} p_k (x_k - x), \frac{P_n t}{2}\right), \mu\left(\sum_{k=n_0+1}^n p_k (x_k - x), \frac{P_n t}{2}\right)\right\}
$$

\n
$$
\geq \min\left\{\mu\left(\sum_{k=1}^{n_0} p_k (x_k - x), \frac{P_n t}{2}\right), \mu\left(\sum_{k=n_0+1}^n p_k (x_k - x), \frac{(P_n - P_{n_0})t}{2}\right)\right\}
$$

\n
$$
\geq \min\left\{\mu\left(\sum_{k=1}^{n_0} p_k (x_k - x), \frac{P_n t}{2}\right), \mu\left(p_{n_0+1}(x_{n_0+1} - x), \frac{P_{n_0+1}t}{2}\right), \cdots, \mu\left(p_n(x_n - x), \frac{P_n t}{2}\right)\right\}
$$

\n
$$
= \min\left\{\mu\left(\sum_{k=1}^{n_0} p_k (x_k - x), \frac{P_n t}{2}\right), \mu\left(x_{n_0+1} - x, \frac{t}{2}\right), \cdots, \mu\left(x_n - x, \frac{t}{2}\right)\right\}
$$

\n
$$
> 1 - \varepsilon
$$

and

$$
\nu\left(\frac{1}{P_n}\sum_{k=1}^n p_k x_k - x, t\right) < \max\left\{\nu\left(\sum_{k=1}^{n_0} p_k (x_k - x), \frac{P_n t}{2}\right), \nu\left(x_{n_0+1} - x, \frac{t}{2}\right), \cdots, \nu\left(x_n - x, \frac{t}{2}\right)\right\}
$$

whenever $n > \max\{n_0, n_1\}$, which completes the proof. \Box

However, as the following example shows, the weighted mean summability of a sequence does not mean convergence in IF− normed space .

Example 2.3. Take $(x_n) = ((-1)^{n-1})$ in IF -normed space $(\mathbb{R}, \mu_0, \nu_0)$ where μ_0 and ν_0 are as in Example [1.2.](#page-1-0) Sequence (x_n) is weighted mean summable to 0 [\[11,](#page-7-10) see Example 3.3], but it is not convergent.

Definition 2.4. [\[25\]](#page-8-2) A nondecreasing sequence of positive numbers (P_n) is called regularly varying of index $\theta > 0$ in the sense of Karamata if,

$$
\lim_{n \to \infty} \frac{P_{\lambda_n}}{P_n} = \lambda^{\theta}, \lambda > 1.
$$
\n(2.1)

We now give some Tauberian conditions in which weighted mean summability leads to convergence in IF− normed spaces.

Theorem 2.5. Let (x_n) be a sequence in (M, μ, ν) . If the condition [\(2.1\)](#page-3-0) is satisfied and (x_n) is weighted mean summable to $x \in M$, then (x_n) converges to x if and only if for each $t > 0$

$$
\sup_{\lambda>1} \liminf_{n \to \infty} \mu\left(\frac{1}{P_{\lambda_n} - P_n} \sum_{k=n+1}^{\lambda_n} p_k(x_k - x_n), t\right) = 1 \tag{2.2}
$$

and

$$
\inf_{\lambda>1} \limsup_{n \to \infty} \nu\left(\frac{1}{P_{\lambda_n} - P_n} \sum_{k=n+1}^{\lambda_n} p_k(x_k - x_n), t\right) = 0. \tag{2.3}
$$

Proof. Necessity. Let (x_n) converges to x. For all $\lambda > 1$ and large enough n, that is when $P_{\lambda_n} > P_n$, we can write (see [\[23,](#page-8-3) Lemma 5.5(i)])

$$
x_n - t_n = \frac{P_{\lambda_n}}{P_{\lambda_n} - P_n}(t_{\lambda_n} - t_n) - \frac{1}{P_{\lambda_n} - P_n} \sum_{k=n+1}^{\lambda_n} p_k(x_k - x_n). \tag{2.4}
$$

Since (t_n) is Cauchy, for each $t > 0$ we have

 $\lim_{n \to \infty} \mu((t_{\lambda_n} - t_n), t) = 1$ and $\lim_{n \to \infty} \nu((t_{\lambda_n} - t_n), t) = 0.$

Hence, for sufficiently large *n* such that $\frac{P_{\lambda_n}}{P_{\lambda_n}-P_n} \leq \frac{2\lambda^{\theta}}{\lambda^{\theta}-P_n}$ $\frac{2\lambda^{\circ}}{\lambda^{\theta}-1}$ is satisfied, we have

$$
\mu\left(\frac{P_{\lambda_n}}{P_{\lambda_n} - P_n}(t_{\lambda_n} - t_n), t\right) = \mu\left(t_{\lambda_n} - t_n, \frac{t}{P_{\lambda_n} - P_n}\right) \ge \mu\left(t_{\lambda_n} - t_n, \frac{t}{\frac{2\lambda^\theta}{\lambda^\theta - 1}}\right) \to 1 \quad (n \to \infty)
$$

and

$$
\nu\left(\frac{P_{\lambda_n}}{P_{\lambda_n} - P_n}(t_{\lambda_n} - t_n), t\right) = \nu\left(t_{\lambda_n} - t_n, \frac{t}{\frac{P_{\lambda_n}}{P_{\lambda_n} - P_n}}\right) \ge \nu\left(t_{\lambda_n} - t_n, \frac{t}{\frac{2\lambda^\theta}{\lambda^\theta - 1}}\right) \to 0 \quad (n \to \infty)
$$

revealing that $\frac{P_{\lambda_n}}{P_{\lambda_n}-P_n}(t_{\lambda_n}-t_n)\to 0$. So, by equation [\(2.4\)](#page-4-0), we conclude

$$
\lim_{n \to \infty} \mu\left(\frac{1}{P_{\lambda_n} - P_n} \sum_{k=n+1}^{\lambda_n} (x_k - x_n) p_k, t\right) = 1 \text{ and } \lim_{n \to \infty} \nu\left(\frac{1}{P_{\lambda_n} - P_n} \sum_{k=n+1}^{\lambda_n} p_k (x_k - x_n), t\right) = 0,
$$

which means that (2.2) and (2.3) are satisfied.

Sufficiency. Let conditions [\(2.2\)](#page-4-1) and [\(2.3\)](#page-4-2) be satisfied. Let $t > 0$ be fixed. For $\varepsilon > 0$ we have:

• There exist $\lambda > 1$ and $n_0 \in \mathbb{N}$ such that

$$
\mu\left(\frac{1}{P_{\lambda_n} - P_n} \sum_{k=n+1}^{\lambda_n} p_k(x_k - x_n), \frac{t}{3}\right) > 1 - \varepsilon \quad \text{and} \quad \mu\left(\frac{1}{P_{\lambda_n} - P_n} \sum_{k=n+1}^{\lambda_n} p_k(x_k - x_n), \frac{t}{3}\right) < \varepsilon
$$
 for $n > n_0$.

444 R. Yapali, H. Polat

- There exists $n_1 \in \mathbb{N}$ such that $\mu\left(t_n x, \frac{t}{3}\right) > 1 \varepsilon$ and $\nu\left(t_n x, \frac{t}{3}\right) <$ ε for $n > n_1$.
- $\bullet\,$ There exists $n_2\in\mathbb{N}$ such that

$$
\mu\left(\frac{P_{\lambda_n}}{P_{\lambda_n}-P_n}(t_{\lambda_n}-t_n),\frac{t}{3}\right) > 1-\varepsilon \text{ and } \nu\left(\frac{P_{\lambda_n}}{P_{\lambda_n}-P_n}(t_{\lambda_n}-t_n),\frac{t}{3}\right) < \varepsilon,
$$

for $n > n_2$, since $\frac{P_{\lambda_n}}{P_{\lambda_n}-P_n}(t_{\lambda_n}-t_n) \to 0$.

Hence, by equation [\(2.4\)](#page-4-0), we get

$$
\mu(x_n - x, t) = \mu (x_n - t_n + t_n - x, t)
$$

\n
$$
= \mu \left(\frac{P_{\lambda_n}}{P_{\lambda_n} - P_n} (t_{\lambda_n} - t_n) - \frac{1}{P_{\lambda_n} - P_n} \sum_{k=n+1}^{\lambda_n} (x_k - x_n) p_k + t_n - x, t \right)
$$

\n
$$
\geq \min \left\{ \mu \left(\frac{P_{\lambda_n}}{P_{\lambda_n} - P_n} (t_{\lambda_n} - t_n), \frac{t}{3} \right), \mu \left(\frac{1}{P_{\lambda_n} - P_n} \sum_{k=n+1}^{\lambda_n} p_k (x_k - x_n), \frac{t}{3} \right), \mu \left(t_n - x, \frac{t}{3} \right) \right\}
$$

\n
$$
> 1 - \varepsilon
$$

and

$$
\nu(x_n - x, t) < \max \left\{ \nu \left(\frac{P_{\lambda_n}}{P_{\lambda_n} - P_n} (t_{\lambda_n} - t_n), \frac{t}{3} \right), \nu \left(\frac{1}{P_{\lambda_n} - P_n} \sum_{k=n+1}^{\lambda_n} p_k (x_k - x_n), \frac{t}{3} \right), \nu \left(t_n - x, \frac{t}{3} \right) \right\}
$$

< ε

for $n > \max\{n_0, n_1, n_2\}$, which completes the proof. \Box

Theorem 2.6. Let sequence (x_n) be in (M, μ, ν) . If (x_n) is weighted mean summable to $x \in M$, then it converges to x if and only if for each $t > 0$

$$
\sup_{0<\lambda<1}\liminf_{n\to\infty}\mu\left(\frac{1}{P_n-P_{\lambda_n}}\sum_{k=\lambda_n+1}^n p_k(x_n-x_k),t\right)=1
$$

and

$$
\inf_{0<\lambda<1}\limsup_{n\to\infty}\nu\left(\frac{1}{P_n-P_{\lambda_n}}\sum_{k=\lambda_n+1}^n p_k(x_n-x_k),t\right)=0.
$$

Proof. The proof is done similarly to that of Theorem [2.5](#page-4-3) by using equation(see $[23, \text{ Lemma } 5.5(ii)]$ $[23, \text{ Lemma } 5.5(ii)]$)

$$
x_n - t_n = \frac{P_{\lambda_n}}{P_n - P_{\lambda_n}} (t_n - t_{\lambda_n}) + \frac{1}{P_n - P_{\lambda_n}} \sum_{k=\lambda_n+1}^n p_k (x_n - x_k) \quad (0 < \lambda < 1)
$$
\ninstead of (2.4).

\n
$$
\Box
$$

Now, we introduce the concept of slow oscillation with respect to weighted mean summability in IFNS.

Definition 2.7. [\[11\]](#page-7-10) (x_n) in (M, μ, ν) is said to be slowly oscillating if

$$
\sup_{\lambda>1} \liminf_{n \to \infty} \min_{n < k \le \lambda_n} \mu(x_k - x_n, t) = 1 \tag{2.5}
$$

and

$$
\inf_{\lambda > 1} \limsup_{n \to \infty} \max_{n < k \le \lambda_n} \nu(x_k - x_n, t) = 0,\tag{2.6}
$$

for each $t > 0$. $\sup_{\lambda > 1}$ in (2.5) and $\inf_{\lambda > 1}$ in (2.6) can be replaced by $\lim_{\lambda \to 1^+}$.

A sequence (x_n) in (M, μ, ν) is slowly oscillating if for each $t > 0$ and for all $\varepsilon > 0$ there exist $\lambda > 1$ and $n_0 \in \mathbb{N}$ such that

$$
\mu(x_k - x_n, t) > 1 - \varepsilon \quad \text{and} \quad \nu(x_k - x_n, t) < \varepsilon
$$

whenever $n_0 \leq n < k \leq \lambda_n$.

Theorem 2.8. Let sequence (x_n) be in (M, μ, ν) . If (x_n) is slowly oscillating then [\(2.2\)](#page-4-1) and [\(2.3\)](#page-4-2) are satisfied.

Proof. Suppose that (x_n) is slowly oscillating with respect to weighted mean summability. Fix $t > 0$. For $\varepsilon > 0$ there exist $\lambda > 1$ and $n_0 \in \mathbb{N}$ such that

$$
\mu(x_k - x_n, t) > 1 - \varepsilon \quad \text{and} \quad \nu(x_k - x_n, t) < \varepsilon
$$

whenever $n_0 \leq n < k \leq \lambda_n$. Hence, we have

$$
\mu\left(\frac{1}{P_{\lambda_n} - P_n} \sum_{k=n+1}^{\lambda_n} p_k(x_k - x_n), t\right) = \mu\left(\sum_{k=n+1}^{\lambda_n} p_k(x_k - x_n), (P_{\lambda_n} - P_n)t\right)
$$

\n
$$
\geq \min\left\{\mu(p_{n+1}(x_{n+1} - x_n), p_{n+1}t), \dots, \mu(p_{\lambda_n}(x_{\lambda_n} - x_n), P_{\lambda_n}t)\right\}
$$

\n
$$
> 1 - \varepsilon
$$

and

$$
\nu\left(\frac{1}{P_{\lambda_n}-P_n}\sum_{k=n+1}^{\lambda_n}(x_k-x_n)p_k,t\right) \leq \max\left\{\nu(x_{n+1}-x_n,t),\ldots,\nu(x_{\lambda_n}-x_n,t)\right\}
$$

< ε

for $n \geq n_0$ and this completes the proof. \Box

In view of Theorem [2.5](#page-4-3) and Theorem [2.8](#page-6-2) we give the following Tauberian theorem.

Theorem 2.9. Let sequence (x_n) be in (M, μ, ν) and the condition [\(2.1\)](#page-3-0) be satisfied. If (x_n) is weighted mean summable to $x \in M$ and slowly oscillating, then (x_n) converges to x.

REFERENCES

- [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353.
- [2] K. Atanassov, Intuitionistic fuzzy sets, In: VII ITKR's Session, Sofia, June 1983 (Deposed in Central Sci.-Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: International Journal of Bioautomation 2016; 20(S1): S1-S6 (in English).
- [3] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96.
- [4] J. H. Park, *Intuitionistic fuzzy metric spaces*, Chaos Solitons Fractals, **22** (2004), 1039–1046.
- [5] R. Saadati, J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals, 27 (2006), 331–344.
- [6] F. Lael, K. Nourouzi, Some results on the IF−normed spaces, Chaos Solitons Fractals, 37 (2008), 931–939.
- [7] S. Karakus, K. Demirci, O. Duman, Statistical convergence on intuitionistic fuzzy normed spaces, Chaos Solitons Fractals, 35 (2008), 763-769.
- [8] M. Mursaleen, S. A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, J. Comput. Appl. Math., 233 (2009), 142–149.
- [9] S. A. Mohiuddine, Q. M. Danish Lohani, On generalized statistical convergence in intuitionistic fuzzy normed space, Chaos Solitons Fractals, 42 (2009), 1731–1737.
- [10] M. Mursaleen, S. A. Mohiuddine, H. H. E. Osama, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl., 59 (2010), 603–611.
- $[11]$ O. Talo, E. Yavuz, *Cesàro summability of sequences in intuitionistic fuzzy normed* spaces and related Tauberian theorems, Soft Comput., 25 (2021), 2315–2323.
- [12] E. Dündar, O. Talo, \mathcal{I}_2 -convergence of double sequences of fuzzy numbers, Iran. J. Fuzzy Syst., 10(3) (2013), 37–50.
- [13] E. Dündar, M. R. Türkmen, N. P. Akın, Regularly ideal convergence of double sequences in fuzzy normed spaces, Bull. Math. Anal. Appl., $12(2)$ (2020), 12–26.
- [14] E. Dündar, O. Talo, F. Başar, Regularly $(\mathcal{I}_2, \mathcal{I})$ – convergence and regularly $(\mathcal{I}_2, \mathcal{I})$ −Cauchy double sequences of fuzzy numbers, International Journal of Analysis, (2013), Article ID 749684.
- [15] Z. Önder, S. A. Sezer, I. Canak, A Tauberian theorem for the weighted mean method of summability of sequences of fuzzy numbers. J. Intell. Fuzzy Systems, 28 (2015), 1403–1409.
- [16] S. A. Sezer, Logarithmic means of sequences of fuzzy numbers and a Tauberian theorem, Soft Comput., 24 (2020), 367–374.
- [17] S. A. Sezer, Statistical harmonic summability of sequences of fuzzy numbers, Soft Comput., (2020), doi: 10.1007/s00500-020-05151-9.
- [18] S. A. Sezer, I. Canak Power series methods of summability for series of fuzzy numbers and related Tauberian Theorems, Soft Comput., 21 (2017), 1057–1064.
- $[19]$ M. R. Türkmen, E. Dündar, On lacunary statistical convergence of double sequences and some properties in fuzzy normed spaces, J. Intell. Fuzzy Syst., 36(2) (2019), 1683–1690.
- [20] U. Totur, I. Canak, Tauberian theorems for $(N; p; q)$ summable double sequences of fuzzy numbers, Soft Comput., 24 (2020), 2301–2310.
- [21] E. Yavuz, H. Coskun, On the logarithmic summability method for sequences of fuzzy numbers, Soft Comput., 21 (2017), 5779–5785.
- [22] E. Yavuz, Tauberian theorems for statistical summability methods of sequences of fuzzy numbers, Soft Comput., 23 (2019), 5659–5665.
- [23] F. Móricz, B. E. Rhoades, Necessary and sufficient Tauberian conditions for certain weighted mean methods of summability, Acta Math. Hungar., 66 (1995), 105–111.
- [24] E. Yavuz, On the logarithmic summability of sequences in intuitionistic fuzzy normed spaces, Fundamental Journal of Mathematics and Applications, 3(2) (2020), 101–108.
- [25] S.A. Sezer and $\dot{\text{I}}$. Canak, *General Tauberian conditions for weighted mean meth*ods of summability, J. Classical Anal., 2 (2019), 79–85.