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1. Introduction

Many mathematicians from various branches have studied fuzzy sets,
which were given by Zadeh[1] in 1965 as a generalization of classical
sets. In classical sets, elements in the universal set are divided crisply
into two groups as members and nonmembers, and partial membership
is not allowed. By giving degrees of membership between 1 and 0, fuzzy
sets, unlike classical sets, allow partial membership and take into ac-
count all items in the universe. Fuzzy sets are used in many real-world
situations to deal with problems of ambiguity and indefiniteness because
of their ability to handle unclassifiable data. In 1983, Atanassov[2, 3],
inspired by fuzzy sets, considered partial non membership and expanded
fuzzy sets to intuitionistic fuzzy sets. Following Atanassov’s introduc-
tion, concepts of intuitionistic fuzzy metric[4] and intuitionistic fuzzy

1Corresponding author: reha.yapali@alparslan.edu.tr
Received: 29 July 2021
Revised: 04 October 2021
Accepted: 09 October 2021

439

http://cjms.journals.umz.ac.ir


440 R. Yapali, H. Polat

norm (IF -norm)[5, 6] are defined, and topics related to them are re-
searched. Convergence of sequences in IFNS is studied in particular,
and various forms of convergence (e.g., statistical and ideal convergence)
are applied to sequences in IFNS to grasp the convergence[7, 8, 9, 10].

Talo and Yavuz[11] recently introduced Cesàro summability of se-
quences in IFNS and provided Tauberian theorems for Cesàro summa-
bility process in IFNS, by which they initiated summability theory and
Tauberian theory in IFNS. They also described the definition of slow
oscillation in IFNS and gave related theorems in their analysis. Af-
ter their study, the logarithmic summability of sequences in IFNS is
defined and a Tauberian theorem for logarithmic summability method
is proved by Yavuz[24]. In this paper, we define the weighted mean
summability of sequences in IFNS and prove a Tauberian theorem for
the weigted mean summability method. Also, we give slowly oscillating
type Tauberian conditions for which weighted mean summability yields
convergence in IFNS.

Definition 1.1. [6] The triplicate (M,µ, ν) is said to be an IF−normed
space if M is a real vector space, and µ, ν are fuzzy sets on M × R
satisfying the following conditions for every x, y ∈ M and k, l ∈ R:

(1) µ(x, k) = 0 for k ≤ 0,
(2) µ(x, k) = 1 for all k ∈ R+ if and only if x = θ

(3) µ(cx, k) = µ
(
x, k

|c|

)
for all k ∈ R+ and c ̸= 0,

(4) µ(x+ y, k + l) ≥ min{µ(x, k), µ(y, l)},
(5) limk→∞ µ(x, k) = 1 and limk→0 µ(x, k) = 0,
(6) ν(x, k) = 1 for k ≤ 0,
(7) ν(x, k) = 0 for all k ∈ R+ if and only if x = θ

(8) ν(cx, k) = ν
(
x, k

|c|

)
for all k ∈ R+ and c ̸= 0,

(9) max{ν(x, k), ν(y, l)} ≥ ν(x+ y, k + l),
(10) limk→∞ ν(x, k) = 0 and limk→0 ν(x, k) = 1.

Indicate that we say (µ, ν) an IF−norm on M . Additionally, it is ob-
vious that the functions µ(x, ·) and ν(x, ·) are both non-increasing and
non-decreasing on R.

Example 1.2. Let (M, ∥ ·∥) be a normed space and µ0, ν0 be fuzzy sets
on M × R defined by

µ0(x, k) =

{
0, k ≤ 0,

k
k+∥x∥ , k > 0,

ν0(x, k) =

{
1, k ≤ 0,
∥x∥

k+∥x∥ , k > 0.

Then (µ0, ν0) is IF−norm on M .

Definition 1.3. [6] A sequence (xn) is said to be convergent to x ∈ M
in the IF−normed space (M,µ, ν) and denoted by xn → x, if for each
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k > 0 and each ε ∈ (0, 1) there exists n0 ∈ N such that

µ(xn − x, k) > 1− ε and ν(xn − x, k) < ε

for all n ≥ n0.

Definition 1.4. [6] A sequence (xn) in an IF−normed space (M,µ, ν)
is said to be Cauchy if for each k > 0 and each ε ∈ (0, 1) there exists
n0 ∈ N such that

µ(xn − xm, k) > 1− ε and ν(xn − xm, k) < ε

for all n,m ≥ n0.

2. Theorems for the weighted mean summability method in
intuitionistic fuzzy normed spaces

In IF− normed space, we now give the weighted mean summability
and prove the related Tauberian theorems. Other work on weighted
mean summability and convergence approaches on fuzzy settings can be
found in [21, 22, 16, 17, 18, 15, 14, 12, 19, 13, 20].

Definition 2.1. Let (xn) be a sequence in IF− normed space (M,µ, ν).
The weighted mean tn of the sequence (xn) is defined by

tn =
1

Pn

n∑
k=0

pkxk where Pn =

n∑
k=0

pk → ∞ (n → ∞).

(xn) is said to be weighted mean summable to x ∈ M if

lim
n→∞

xn = x.

In order to show that the weighted mean method in IF− normed
space is regular, we give the following theorem.

Theorem 2.2. Let (xn) be a sequence in (M,µ, ν). (xn) is weighted
mean summable to x, if (xn) is convergent to x ∈ M .

Proof. Let the sequence (xn) converge to x ∈ M . Fix t > 0. For ε > 0

• There exists n0 ∈ N such that µ
(
xn − x, t

2

)
> 1−ε and ν

(
xn − x, t

2

)
<

ε for n > n0.
• There exists n1 ∈ N such that

µ

(
n0∑
k=1

pk(xk − x),
Pnt

2

)
> 1− ε and ν

(
n0∑
k=1

pk(xk − x),
Pnt

2

)
< ε

for n > n1, since we have

lim
n→∞

µ

(
n0∑
k=1

pk(xk − x),
Pnt

2

)
= 1 and lim

n→∞
ν

(
n0∑
k=1

pk(xk − x),
Pnt

2

)
= 0.
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Hence we get

µ

(
1

Pn

n∑
k=1

pkxk − x, t

)
= µ

(
1

Pn

n∑
k=1

pk(xk − x), t

)
= µ

(
n∑

k=1

pk(xk − x), Pnt

)

≥ min

{
µ

(
n0∑
k=1

pk(xk − x),
Pnt

2

)
, µ

(
n∑

k=n0+1

pk(xk − x),
Pnt

2

)}

≥ min

{
µ

(
n0∑
k=1

pk(xk − x),
Pnt

2

)
, µ

(
n∑

k=n0+1

pk(xk − x),
(Pn − Pn0

)t

2

)}

≥ min

{
µ

(
n0∑
k=1

pk(xk − x),
Pnt

2

)
, µ

(
pn0+1(xn0+1 − x),

Pn0+1t

2

)
, · · · , µ

(
pn(xn − x),

Pnt

2

)}

= min

{
µ

(
n0∑
k=1

pk(xk − x),
Pnt

2

)
, µ

(
xn0+1 − x,

t

2

)
, · · · , µ

(
xn − x,

t

2

)}
> 1− ε

and

ν

(
1

Pn

n∑
k=1

pkxk − x, t

)
< max

{
ν

(
n0∑
k=1

pk(xk − x),
Pnt

2

)
, ν

(
xn0+1 − x,

t

2

)
, · · · , ν

(
xn − x,

t

2

)}
< ε

whenever n > max{n0, n1}, which completes the proof. □

However, as the following example shows, the weighted mean summa-
bility of a sequence does not mean convergence in IF− normed space
.

Example 2.3. Take (xn) = ((−1)n−1) in IF−normed space (R, µ0, ν0)
where µ0 and ν0 are as in Example 1.2. Sequence (xn) is weighted mean
summable to 0 [11, see Example 3.3], but it is not convergent.

Definition 2.4. [25] A nondecreasing sequence of positive numbers (Pn)
is called regularly varying of index θ > 0 in the sense of Karamata if,

lim
n→∞

Pλn

Pn
= λθ, λ > 1. (2.1)

We now give some Tauberian conditions in which weighted mean
summability leads to convergence in IF− normed spaces.



Tauberian theorems for the weighted mean methods of summability 443

Theorem 2.5. Let (xn) be a sequence in (M,µ, ν). If the condition
(2.1) is satisfied and (xn) is weighted mean summable to x ∈ M , then
(xn) converges to x if and only if for each t > 0

sup
λ>1

lim inf
n→∞

µ

(
1

Pλn − Pn

λn∑
k=n+1

pk(xk − xn), t

)
= 1 (2.2)

and

inf
λ>1

lim sup
n→∞

ν

(
1

Pλn − Pn

λn∑
k=n+1

pk(xk − xn), t

)
= 0. (2.3)

Proof. Necessity. Let (xn) converges to x. For all λ > 1 and large
enough n, that is when Pλn > Pn, we can write (see [23, Lemma 5.5(i)])

xn − tn =
Pλn

Pλn − Pn
(tλn − tn)−

1

Pλn − Pn

λn∑
k=n+1

pk(xk − xn)· (2.4)

Since (tn) is Cauchy, for each t > 0 we have

lim
n→∞

µ ((tλn − tn), t) = 1 and lim
n→∞

ν ((tλn − tn), t) = 0.

Hence, for sufficiently large n such that
Pλn

Pλn−Pn
≤ 2λθ

λθ−1
is satisfied, we

have

µ

(
Pλn

Pλn − Pn
(tλn − tn) , t

)
= µ

tλn − tn,
t

Pλn
Pλn−Pn

 ≥ µ

(
tλn − tn,

t
2λθ

λθ−1

)
→ 1 (n → ∞)

and

ν

(
Pλn

Pλn − Pn
(tλn − tn) , t

)
= ν

tλn − tn,
t

Pλn
Pλn−Pn

 ≥ ν

(
tλn − tn,

t
2λθ

λθ−1

)
→ 0 (n → ∞)

revealing that
Pλn

Pλn−Pn
(tλn − tn) → 0. So, by equation (2.4), we conclude

lim
n→∞

µ

(
1

Pλn − Pn

λn∑
k=n+1

(xk − xn)pk, t

)
= 1 and lim

n→∞
ν

(
1

Pλn − Pn

λn∑
k=n+1

pk(xk − xn), t

)
= 0,

which means that (2.2) and (2.3) are satisfied.
Sufficiency. Let conditions (2.2) and (2.3) be satisfied. Let t > 0 be

fixed. For ε > 0 we have:

• There exist λ > 1 and n0 ∈ N such that

µ

(
1

Pλn − Pn

λn∑
k=n+1

pk(xk − xn),
t

3

)
> 1−ε and µ

(
1

Pλn − Pn

λn∑
k=n+1

pk(xk − xn),
t

3

)
< ε

for n > n0.
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• There exists n1 ∈ N such that µ
(
tn − x, t

3

)
> 1−ε and ν

(
tn − x, t

3

)
<

ε for n > n1.
• There exists n2 ∈ N such that

µ

(
Pλn

Pλn − Pn
(tλn − tn) ,

t

3

)
> 1−ε and ν

(
Pλn

Pλn − Pn
(tλn − tn) ,

t

3

)
< ε,

for n > n2, since
Pλn

Pλn−Pn
(tλn − tn) → 0.

Hence, by equation (2.4), we get

µ(xn − x, t) = µ (xn − tn + tn − x, t)

= µ

(
Pλn

Pλn − Pn
(tλn − tn)−

1

Pλn − Pn

λn∑
k=n+1

(xk − xn)pk + tn − x, t

)

≥ min

{
µ

(
Pλn

Pλn − Pn
(tλn − tn) ,

t

3

)
, µ

(
1

Pλn − Pn

λn∑
k=n+1

pk(xk − xn),
t

3

)
, µ

(
tn − x,

t

3

)}
> 1− ε

and

ν(xn − x, t) < max

{
ν

(
Pλn

Pλn − Pn
(tλn − tn) ,

t

3

)
, ν

(
1

Pλn − Pn

λn∑
k=n+1

pk(xk − xn),
t

3

)
, ν

(
tn − x,

t

3

)}
< ε

for n > max{n0, n1, n2}, which completes the proof. □

Theorem 2.6. Let sequence (xn) be in (M,µ, ν). If (xn) is weighted
mean summable to x ∈ M , then it converges to x if and only if for each
t > 0

sup
0<λ<1

lim inf
n→∞

µ

 1

Pn − Pλn

n∑
k=λn+1

pk(xn − xk), t

 = 1

and

inf
0<λ<1

lim sup
n→∞

ν

 1

Pn − Pλn

n∑
k=λn+1

pk(xn − xk), t

 = 0.

Proof. The proof is done similarly to that of Theorem 2.5 by using equa-
tion(see [23, Lemma 5.5(ii)])

xn−tn =
Pλn

Pn − Pλn

(tn − tλn)+
1

Pn − Pλn

n∑
k=λn+1

pk(xn − xk) (0 < λ < 1)

instead of (2.4). □
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Now, we introduce the concept of slow oscillation with respect to
weighted mean summability in IFNS.

Definition 2.7. [11] (xn) in (M,µ, ν) is said to be slowly oscillating if

sup
λ>1

lim inf
n→∞

min
n<k≤λn

µ(xk − xn, t) = 1 (2.5)

and
inf
λ>1

lim sup
n→∞

max
n<k≤λn

ν(xk − xn, t) = 0, (2.6)

for each t > 0. supλ>1 in (2.5) and infλ>1 in (2.6) can be replaced by
limλ→1+ .

A sequence (xn) in (M,µ, ν) is slowly oscillating if for each t > 0 and
for all ε > 0 there exist λ > 1 and n0 ∈ N such that

µ(xk − xn, t) > 1− ε and ν(xk − xn, t) < ε

whenever n0 ≤ n < k ≤ λn.

Theorem 2.8. Let sequence (xn) be in (M,µ, ν). If (xn) is slowly os-
cillating then (2.2) and (2.3) are satisfied.

Proof. Suppose that (xn) is slowly oscillating with respect to weighted
mean summability. Fix t > 0. For ε > 0 there exist λ > 1 and n0 ∈ N
such that

µ(xk − xn, t) > 1− ε and ν(xk − xn, t) < ε

whenever n0 ≤ n < k ≤ λn. Hence, we have

µ

(
1

Pλn − Pn

λn∑
k=n+1

pk(xk − xn), t

)
= µ

(
λn∑

k=n+1

pk(xk − xn), (Pλn − Pn)t

)
≥ min {µ(pn+1(xn+1 − xn), pn+1t), . . . , µ(pλn(xλn − xn), Pλnt)}
> 1− ε

and

ν

(
1

Pλn − Pn

λn∑
k=n+1

(xk − xn)pk, t

)
≤ max {ν(xn+1 − xn, t), . . . , ν(xλn − xn, t)}

< ε

for n ≥ n0 and this completes the proof. □

In view of Theorem 2.5 and Theorem 2.8 we give the following Taube-
rian theorem.

Theorem 2.9. Let sequence (xn) be in (M,µ, ν) and the condition (2.1)
be satisfied. If (xn) is weighted mean summable to x ∈ M and slowly
oscillating, then (xn) converges to x.
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