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Verda Gürdal 1

1 Suleyman Demirel University, Department of Mathematics, East
Campus, 32260, Isparta, Turkey

Abstract. In this article we introduce the notion I3-cluster points,
and investigate the relation between I3-cluster points and limit
points of triple sequences in the topology induced by random 2-
normed spaces and prove some important results.

Keywords: t-norm, random 2-normed space, ideal convergence,
triple sequence, F -topology.

2020 Mathematics subject classification: 40A35; Secondary 46A70,

54E70.

1. Introduction

Statistical convergence for real sequence was first introduced by Fast [4]
in 1951. Since then statistical convergence was investigated by more and
more researchers. The concept of I-convergence, and interesting gener-
alization of statistical convergence [4], was first presented by Kostyrko et
al. [17] with use of the ideal I of subsets of the set of natural numbers N
and further studies done in [23]. The study of ideal convergence in triple
sequence has been initiated by Şahiner and Tripathy [34]. More analysis
in this field and more implications of these statistical convergence and
ideal convergence can be seen in [1, 2, 3, 13, 24, 25]
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Menger [18] introduced the notion of probabilistic metric spaces, which
is an interesting and important generalization of metric spaces, the study
of these spaces was under the name of statistical metric. The idea of
Menger was to use distribution function instead of non-negative real
numbers as values of the metric. In this theory, the notion of distance has
a probablistic nature. Namely, the distance between two points x and
y is represented by a distribution function Fxy; and for ε > 0, the value
Fxy (ε) is interpreted as the probability that the distance from x to y is
less than ε. In fact the probabilistic theory has become an area of active
research for the last fourthly years. An important family of probabilistic
metric spaces are probabilistic normed spaces. The notion of probabilis-
tic normed spaces was introduced in [28] and [29] and since then several
generalizations and applications of this notion have been investigated
by various authors, namely [9, 10, 11, 12, 19, 20, 22, 26, 27, 30, 31, 33].
Further it was extended to random/probabilistic 2-normed spaces by
Golet [8] using the concept of 2-norm of Gähler [7].

In this article, we will give informations about triple sequences and
new results in the last section. New results are related to study the
concept of I-cluster points and ordinary limit points for triple sequences
in random 2-normed spaces and their main properties.

2. Preliminaries

In this section, we recall some basic definitions and notations which
form the background of the present work.

The notion of statistical convergence is based on the asymptotic den-
sity of the subsets of the set N of positive integers. In [5] an axiomatic
approach is given for introducing the notion of density of sets K ⊆ N.

Let K be a subset of the set of natural numbers N. We denote by
Kn the number of elements of the set K which are less or equal to
n ∈ N. Also |Kn| denotes the cardinality of the set Kn. The natural
(asymptotic) density of K is defined by

δ (K) = lim
n→∞

1

n
|Kn|

whenever the limit exists. We recall also that δ (N \K) = 1− δ (K) . If
x is a sequence such that xk satisfies property P for all k except a set of
natural density zero, then we write that xk satisfies P for almost all k
(a.a.k). It is said that a sequence x = (xn)n∈N is statistically convergent
to a point L if for every ε > 0,

δ ({n ∈ N : |xn − L| ≥ ε}) = 0.

In this case, we write st-limxk = L and S denotes the set of all statis-
tically convergent sequences.
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The notion of statistical convergence was further generalized in the
paper [17] using the notion of an ideal of subsets of the set N. We
say that a non-empty family of sets I ⊂ P (N) is an ideal on N if I is
hereditary (i.e. B ⊂ A ∈ I ⇒ B ∈ I ) and additive (i.e. A,B ∈ I
implies A ∪ B ∈ I). An ideal I on N for which I ≠ P (N) is called a
non-trivial ideal. A non-trivial ideal I is called admissible if I contains
all finite subsets of N. If not otherwise stated in the sequel I will denote
an admissible ideal. Let I ⊂ P (N) be any ideal. A class F (I) =
{M ⊂ N : ∃A ∈ I : M = N\A} called the filter associated with the ideal
I, is a filter on N.

Definition 2.1. Let I ⊂ 2N be a nontrivial ideal in N. Then a sequence
(xn)n∈N in X is said to be I-convergent to L ∈ X, if for each ε > 0 the
set A (ε) = {n ∈ N : |xn − L| ≥ ε} belongs to I.

Take for I the class If of all finite subsets of N. Then If is a non-
trivial admissible ideal and If -convergence coincides with the usual con-
vergence. For more information about I-convergent, see the references
in [23].

We now recall the following basic concepts from [32, 34] which will be
needed throughout the paper.

A function x : N × N × N → R (or C) is called a real (or complex)
triple sequence. A triple sequence (xjkl) is said to be convergent to L in
Pringsheim’s sense if for every ε > 0, there exists n0 (ε) ∈ N such that
|xjkl − L| < ε whenever j, k, l ≥ n0. A triple sequence (xjkl) is said to
be bounded if there exists M > 0 such that |xjkl| < M for all j, k, l ∈ N.
We denote the space of all bounded triple sequences by ℓ3∞.

Definition 2.2. A subset K of N×N×N is said to have natural density
δ3(K) if

δ3(K) = P − lim
j,k,l→∞

|Kjkl|
jkl

exists, where the vertical bars denote the number of (j, k, l) in K such
that p ≤ j, q ≤ k, r ≤ l. Then, a real triple sequence x = (xjkl) is
said to be statistically convergent to L in Pringsheim’s sense if for every
ε > 0,

δ3 ({(j, k, l) ∈ N× N× N : |xjkl − L| ≥ ε}) = 0.

As can be seen from the following example a st3-convergent sequence
does not need to be bounded.

Example 2.3. Let

(xjkl) =

{
jkl , j, k, l are cubes
4 , otherwise.
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Then st3-limxjkl = 4 but (xjkl) is neither convergent in Pringsheim’s
sense nor bounded.

If (xjmknlo)m,n,o∈N is a sub-sequence of the triple sequence x = (xjkl) of

real numbers and M = {(jmknlo) : m,n, o ∈ N}, we abbreviate
(xjmknlo)m,n,o∈N by (x)M. Now δ3 (M) = 0, then (x)M is said to be

a thin sub-sequence of the sequence x and (x)M is called a non-thin
sub-sequence of x if M does not have triple natural density zero i.e.,
either δ3 (M) is a positive number or M fails to have triple natural
density.

Definition 2.4. Let I3 be an admissible ideal on 2N×N×N, then a triple
sequence (xjkl) is said to be I3-convergent to L in Pringsheim’s sense if
for every ε > 0,

{(j, k, l) ∈ N× N× N : |xjkl − L| ≥ ε} ∈ I3.

In this case, one writes I3-limxjkl = L.

Remark 2.5. (i) Let I3 (f) be the family of all finite subsets of N ×
N×N. Then I3 (f) convergence coincides with the convergence of triple
sequences in [32].

(ii) Let I3 (δ) = {A ⊂ N× N× N : δ (A) = 0} . Then I3 (δ) conver-
gence coincides with the statistical convergence in [32].

Example 2.6. Let I = I3 (δ) . Define the triple sequence (xjkl) by

(xjkl) =

{
1 , j, k, l are cubes
4 , otherwise.

Then for every ε > 0

δ ({(j, k, l) ∈ N× N× N : |xjkl − 4| ≥ ε}) ≤ lim
p,q,r

√
p
√
q
√
r

pqr
= 0.

This implies that I-limxjkl = 4. But, the triple sequence (xjkl) is not
convergent to 4.

Throughout the chapter we consider the ideals of 2N by I; the ideals
of 2N×N by I2 and the ideals of 2N×N×N by I3.

Definition 2.7. ([7]) Let X be a real vector space of dimension d, where
2 ≤ d < ∞. A 2-norm on X is a function ∥·, ·∥ : X × X → R which
satisfies (i) ∥x, y∥ = 0 if and only if x and y are linearly dependent;
(ii) ∥x, y∥ = ∥y, x∥ ; (iii) ∥αx, y∥ = |α| ∥x, y∥ , α ∈ R; (iv) ∥x, y + z∥ ≤
∥x, y∥+ ∥x, z∥ . The pair (X, ∥·, ·∥) is then called a 2-normed space.

As an example of a 2-normed space we may take X = R2 being
equipped with the 2-norm ∥x, y∥ := the area of the parallelogram spanned
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by the vectors x and y, which may be given explicitly by the formula

∥x, y∥ = |x1y2 − x2y1| , x = (x1, x2) , y = (y1, y2) .

Observe that in any 2-normed space (X, ∥·, ·∥) we have ∥x, y∥ ≥ 0 and
∥x, y + αx∥ = ∥x, y∥ for all x, y ∈ X and α ∈ R. Also, if x, y and z
are linearly dependent, then ∥x, y + z∥ = ∥x, y∥+ ∥x, z∥ or ∥x, y − z∥ =
∥x, y∥ + ∥x, z∥ . Given a 2-normed space (X, ∥·, ·∥) , one can derive a
topology for it via the following definition of the limit of a sequence: a se-
quence (xn) inX is said to be convergent to x inX if limn→∞ ∥xn − x, y∥ =
0 for every y ∈ X.

All the concepts listed below are studied in depth in the fundamental
book by Schweizer and Sklar [29].

Definition 2.8. Let R denotes the set of real numbers,
R+ = {x ∈ R : x ≥ 0} and S = [0, 1] the closed unit interval. A mapping
f : R → S is called a distribution function if it is nondecreasing and left
continuous with inft∈R f (t) = 0 and supt∈R f (t) = 1.

We denote the set of all distribution functions byD+ such that f (0) =
0. If a ∈ R+, then Ha ∈ D+, where

Ha (t) =

{
1, if t > a,
0, if t ≤ a.

It is obvious that H0 ≥ f for all f ∈ D+.

Definition 2.9. A triangular norm (t-norm) is a continuous mapping
∗ : S × S → S such that (S, ∗) is an abelian monoid with unit one
and c ∗ d ≤ a ∗ b if c ≤ a and d ≤ b for all a, b, c, d ∈ S. A triangle
function τ is a binary operation on D+ which is commutive, associative
and τ (f,H0) = f for every f ∈ D+.

Definition 2.10. LetX be a linear space of dimension greater than one,
τ is a triangle, and F : X × X → D+. Then F is called a probabilis-
tic 2-norm and (X,F, τ) a probabilistic 2-normed space if the following
conditions are satisfied:

(1) F (x, y; t) = H0(t) if x and y are linearly dependent, where F (x, y; t)
denotes the value of F (x, y) at t ∈ R,

(2) F (x, y; t) ̸= H0(t) if x and y are linearly independent,
(3) F (x, y; t) = F (y, x; t) for all x, y ∈ X,
(4) F (αx, y; t) = F (x, y; t

|α|) for every t > 0, α ̸= 0 and x, y ∈ X,

(5) F (x+ y, z; t) ≥ τ(F (x, z; t), F (y, z; t)) whenever x, y, z ∈ X.
If (2.2.5) is replaced by
(6) F (x+ y, z; t1 + t2) ≥ F (x, z; t1) ∗F (y, z; t2) for all x, y, z ∈ X and

t1, t2 ∈ R+;
then (X,F, ∗) is called a random 2-normed space (for short, RTN space).
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Remark 2.11. Note that every 2-norm space (X, ∥., .∥) can be made a
random 2-normed space in a natural way, by setting

(i) F (x, y; t) = H0(t − ∥x, y∥), for every x, y ∈ X, t > 0 and a ∗ b =
min {a, b} , a, b ∈ S;

(ii) F (x, y; t) = t
t+∥x,y∥ for every x, y ∈ X, t > 0 and a ∗ b = ab for

a, b ∈ S.

Let (X,F, ∗) be an RTN space. Since ∗ is a continuous t-norm, the
system of (ε, λ)-neighborhoods of θ (the null vector in X)

{Nθ(ε, λ) : ε > 0, λ ∈ (0, 1)} ,

where

Nθ(ε, λ) = {x ∈ X : Fx(ε) > 1− λ} .
determines a first countable Hausdorff topology on X, called the F -
topology. Thus, the F -topology can be completely specified by means
of F -convergence of sequences. It is clear that x−y ∈ Nθ means y ∈ Nx

and vice versa.
A triple sequence x = (xjkl) in X is said to be F -convergence to

L ∈ X if for every ε > 0, λ ∈ (0, 1) and for each nonzero z ∈ X there
exists a positive integer N such that

xjkl, z − L ∈ Nθ(ε, λ) for each n ≥ N

or equivalently,

xjkl, z ∈ NL(ε, λ) for each n ≥ N.

In this case we write F -limxjkl, z = L.

3. The Main results

In this section, we will examine the concept of I3-cluster points and
I3-limit points sets of a given triple sequences in the topology induced
by random 2-normed spaces.

Definition 3.1. Let (X,F, ∗) be an RTN space, I3 be an admissible
ideal and x = (xjkl) ∈ X. An element L ∈ X is said to be an I3-limit
point of a triple sequence x with respect to the random 2-norm F (or
I3
F (x)-limit point) if there is a set

M = {(jm, km, lm) : j1 < j2 < ...; k1 < k2 < ...; l1 < l2 < ...}

of N× N× N such that M /∈ I3 and F - lim
m→∞

xjmkmlm , z = L for each

nonzero z in X.

The set of all I3
F -limit points of x is denoted by I

(
Λ3
F (x)

)
.
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Definition 3.2. Let (X,F, ∗) be an RTN space, and x = (xjkl) ∈ X.
An element L ∈ X is said to be an I3-cluster point of x with respect to
the random 2-norm F (or I3

F -cluster point) if for each ε > 0, λ ∈ (0, 1)
and nonzero z in X

{(j, k, l) ∈ N× N× N : xjkl, z ∈ NL(ε, λ)} /∈ I3.

The set of all I3
F -cluster points of x is denoted by I

(
Γ3
F (x)

)
.

Theorem 3.3. Let (X,F, ∗) be an RTN space and I3 be an admis-
sible ideal. Then for each triple sequence x = (xjkl) of X we have
I
(
Λ3
F (x)

)
⊂ I

(
Γ3
F (x)

)
and the set I

(
Γ3
F (x)

)
is a closed set.

Proof. Let L ∈ I
(
∧3
F

)
. Then there exists a set

M = {(jm, km, lm) : j1 < j2 < ...; k1 < k2 < ...; l1 < l2 < ...} ⊂ N× N× N
such that M /∈ I3 and

F - lim
m→∞

xjmkmlm , z = L (3.1)

for each nonzero z in X. Suppose ε > 0 be arbitrary. According to 3.1,
for each ε > 0, λ ∈ (0, 1) and nonzero z in X there exists a positive
integer p0 such that for j, k, l ≥ p0 we have xjkl−L, z ∈ NL(ε, λ). Hence

{(j, k, l) ∈ N× N× N : xjkl − L, z ∈ NL(ε, λ)}
⊃ {jp0+1, jp0+2, ...; kp0+1, kp0+2, ...; lp0+1, lp0+2, ...}

and so

{(j, k, l) ∈ N× N× N : xjkl − L, z ∈ NL(ε, λ)} /∈ I3,
which means that L ∈ I

(
Γ3
F (x)

)
.

Let y ∈ I
(
Γ3
F

)
. Take ε > 0 and λ ∈ (0, 1) . There exists L ∈

I
(
Γ3
F (x)

)
∩Nθ (y, ε, λ) . Choose η > 0 such thatNθ (L, η, λ) ⊂ Nθ (y, ε, λ) .

We obviously have

{(j, k, l) ∈ N× N× N : y − xjkl, z ∈ Nθ(ε, λ)}
⊃ {(j, k, l) ∈ N× N× N : L− xjkl, z ∈ Nθ(η, λ)} .

Hence
{(j, k, l) ∈ N× N× N : y − xjkl, z ∈ Nθ(ε, λ)} /∈ I3

and y ∈ I
(
Γ3
F (x)

)
. This completes the proof of the theorem. □

Definition 3.4. Let (X,F, ∗) be an RTN space and x = (xjkl)j,k,l∈N ∈
X. An element L ∈ X is said to be limit point of the triple sequence
x = (xjkl) with respect to the random 2-norm F if there is subsequence
of the sequence x which converges to L with respect to the random 2-
norm F. By L3

F (x) , we denote the set of all limit points of the sequence
x = (xjkl) with respect to the random 2-norm F.
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It is obvious I
(
Λ3
F (x)

)
⊆ L3

F (x) , I
(
Γ3
F (x)

)
⊆ L3

F (x) : Take L ∈
I
(
Γ3
F (x)

)
, then {(j, k, l) ∈ N× N× N : xjkl, z ∈ NL (ε, λ)} /∈ I3 for each

ε > 0, λ ∈ (0, 1) and nonzero z in X. If L /∈ L3
F (x) , then there is

ε′ > 0 such that NL (ε′, λ) contains only a finite number of elements
of x in X. Then {(j, k, l) ∈ N× N× N : xjkl, z ∈ NL (ε′, λ)} ∈ I3, but it
contradicts to L ∈ I

(
Γ3
F (x)

)
. Hence x ∈ I

(
Γ3
F (x)

)
. Thus x ∈ L3

F (x) ,

and so I
(
Γ3
F (x)

)
⊆ L3

F (x) .

Definition 3.5. Let I3 be an admissible ideal in N× N× N and (X,F, ∗)
be an RTN space. The triple sequence (xjkl) in X is said to be IF -
convergent to L ∈ X with respect to the random 2-norm F if for each
ε > 0, λ ∈ (0, 1) and nonzero z in X

{(j, k, l) ∈ N× N× N : xjkl, z /∈ NL (ε, λ)} ∈ I3.

Lemma 3.6. Let x = (xjkl) be a triple sequence in an RTN space
(X,F, ∗) . If x is IF -convergent with respect to the random 2-norm F ,
then I

(
Λ3
F (x)

)
and I

(
Γ3
F (x)

)
are both equal to the singleton set

{IF - limxn, z} for each nonzero z in X.

Proof. Let IF -limn xn, z = L1, where L1 ̸= L2. Then there exist two
subsets A and A′, that is,

A = {(jm, km, lm) : j1 < j2 < ...; k1 < k2 < ...; l1 < l2 < ...}
and

A′ = {(pm, qm, rm) : p1 < p2 < ...; q1 < q2 < ...; r1 < r2 < ...}
of N× N× N such that

A /∈ I3 and F − lim
m→∞

xjmkmlm , z = L2 (3.2)

A′ /∈ I3 and F − lim
m→∞

xpmqmrm , z = L1. (3.3)

By (3.3), given ε > 0, λ ∈ (0, 1) and nonzero z ∈ X, there exists p0 ∈ N
such that for m > p0 we have xpmqmrm , z ∈ NL1 (ε, λ) . Hence,

A =
{
(jm, km, lm) ∈ A′ : xpmqmrm , z /∈ NL1 (ε, λ)

}
⊂

{
(pm, qm, rm) ∈ A′ : p1 < p2 < ... < pp0 ;

q1 < q2 < ... < qp0 ; r1 < r2 < ... < rp0} .
Since I3 is an admissible ideal we have A ∈ I3. If can choose the set

B =
{
(pm, qm, rm) ∈ A′ : xpmqmrm , z ∈ NL1 (ε, λ)

}
/∈ I3.

On the other hand, B ∈ I3, then A ∪ B = A′ ∈ I3, which contradicts
(3.3). Since IF -limn xn, z = L2, we have that for each ε > 0, λ ∈ (0, 1)
and nonzero z ∈ X,

C = {(j, k, l) ∈ N× N× N : xjkl, z /∈ NL2 (ε, λ)} ∈ I3.
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Hence,

Cc = {(j, k, l) ∈ N× N× N : xjkl, z ∈ NL2 (ε, λ)} ∈ F (I3) .

Since for every L1 ̸= L2, we have B∩Cc = ∅, B ⊂ C. Since C ∈ I3 implies
B ∈ I3, this contradicts the fact that B /∈ I3. Hence I

(
Λ3
F (x)

)
= L2.

Suppose that IF -limn xn, z = L1, where L1 ̸= L2. By definition, for
each ε > 0, λ ∈ (0, 1) and nonzero z ∈ X, we get

A1 = {(j, k, l) ∈ N× N× N : xjkl, z ∈ NL2 (ε, λ)} /∈ I3
and

A2 = {(j, k, l) ∈ N× N× N : xn, z ∈ NL1 (ε, λ)} /∈ I3.
For L1 ̸= L2, we haveA1∩A2 = ∅ and soA2 ⊂ Ac

1. Also, IF -limn xn, z =
L2 implies that

Ac
1 = {(j, k, l) ∈ N× N× N : xjkl, z /∈ NL2 (ε, λ)} ∈ I3.

HenceA2 ∈ I3, which is a contradiction toA2 /∈ I3.We have I
(
Λ3
F (x)

)
=

I
(
Γ3
F (x)

)
= L2. This completes the proof of the lemma. □

Theorem 3.7. Let (X,F, ∗) be an RTN space and x = (xjkl) and y =
(yjkl) be triple sequences in X such that

A = {(j, k, l) ∈ N× N× N : xjkl ̸= yjkl} ∈ I3.

Then I
(
Λ3
F (x)

)
= I

(
Λ3
F (y)

)
and I

(
Γ3
F (x)

)
= I

(
Γ3
F (y)

)
.

Proof. Let A ∈ I3 and ε > 0 be given. If L ∈ I
(
Λ3
F (x)

)
, then there is

a subset

M = {(jm, km, lm) : j1 < j2 < ...; k1 < k2 < ...; l1 < l2 < ...} ⊂ N× N× N

such that M /∈ I3 and F − lim
m→∞

xjmkmlm , z = L for each nonzero z in X.

Given ε > 0 and λ ∈ (0, 1) there exists N ∈ N such that xjmkmlm , z ∈
NL (ε, λ) for m > N and nonzero z ∈ X. Since

B1 = {(j, k, l) ∈ N× N× N : (j, k, l) ∈ M∧ xjkl ̸= yjkl} ∈ I3,

then

B2 = {(j, k, l) ∈ N× N× N : (j, k, l) ∈ M∧ xjkl = yjkl} /∈ I3.

Indeed, if B2 ∈ I3, then B = B1 ∪ B2 ∈ I3, but B /∈ I3. Hence the
subsequence (yjkl)(j,k,l)∈B2

of the sequence y = (yjkl) is convergent to L

with respect to the random 2-norm F. This implies that L ∈ I
(
Λ3
F (y)

)
.

Similarly we can show that I
(
∧3
F (y)

)
⊂ I

(
∧3
F (x)

)
. Hence I

(
Λ3
F (y)

)
=

I
(
Λ3
F (x)

)
. Now let L ∈ I

(
Γ3
F (x)

)
. Then

C1 = {(j, k, l) ∈ N× N× N : xjkl, z ∈ NL (ε, λ)} /∈ I3
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for each ε > 0, λ ∈ (0, 1) and nonzero z ∈ X and

C2 = {(j, k, l) ∈ N× N× N : (j, k, l) ∈ C1 ∧ xjkl = yjkl} /∈ I3.
Therefore, C2 ⊂ {(j, k, l) ∈ N× N× N : yjkl, z ∈ NL (ε, λ)} . It shows that

{(j, k, l) ∈ N× N× N : yjkl, z ∈ NL (ε, λ)} /∈ I3
i.e. L ∈ I

(
Γ3
F (y)

)
. Similarly, we can show that I

(
Γ3
F (y)

)
⊂ I

(
Γ3
F (x)

)
and hence I

(
Γ3
F (x)

)
= I

(
Γ3
F (y)

)
. This completes the proof of the

theorem. □

The next theorem proves a strong connection between I3
F -cluster and

limit points of a given triple sequence with respect to the random 2-norm
F .

Definition 3.8. Let (X,F, ∗) be an RTN space, I3 be an admissible
ideal and (xjmknlo)m,n,o∈N be a sub-sequence of the triple sequence x =

(xjkl)j,k,l∈N . If K = {(jmknlo) : m,n, o ∈ N} ∈ I3, then the subsequence

xK = (xjmknlo) in X is called I3
F -thin subsequence of the triple sequence

x = (xjkl) in X. If K /∈ I3, then the subsequence xK in X is called
I3
F -nonthin subsequence of the triple sequence x = (xjkl) in X.

It is clear that if L is a I3
F -limit point of x ∈ X, then there is a

I3
F -nonthin subsequence xK that convergent to L with respect to the

random 2-norm F.

Definition 3.9. An admissible ideal I3 ⊂ 2N×N×N is said to satisfy
the condition (AP) if for every sequence (As)s∈N of pairwise disjoint
sets from I3 there are sets Bs ⊂ N, s ∈ N, such that the symmetric
difference As∆Bs is a finite set for every s ∈ N and ∪s∈NBs ∈ I3.

Theorem 3.10. Let (X,F, ∗) be an RTN space and I3 be an admissible
ideal with property (AP) and x = (xjkl) be a triple sequence in X. Then
there is a sequence y = (yjkl) ∈ X such that L3

F (y) = I
(
Γ3
F (x)

)
and

{(j, k, l) ∈ N× N× N : xjkl ̸= yjkl} ∈ I3.

Proof. If I
(
Γ3
F (x)

)
= L3

F (x), then y = x and this case is trivial. Let

I
(
Γ3
F (x)

)
is a proper subset of L3

F (x) . Then L3
F (x) \I

(
Γ3
F (x)

)
̸= ∅

and for each L ∈ L3
F (x) \I

(
Γ3
F (x)

)
. There is an I3

F -thin subsequence
(xjmknlo)m,n,o∈N of x such that F − lim

m,n,o→∞
xjmknlo , z = L, i.e., given

ε > 0, λ ∈ (0, 1) there exists a positive integer N such that xjmknlo , z /∈
NL (ε, λ) for m,n, o > N and nonzero z ∈ X. Hence there is a NL (ε, λ)
such that {(m,n, o) ∈ N× N× N : xjmknlo , z ∈ NL = NL (δ, λ)} ∈ I3 for
each δ > 0, λ ∈ (0, 1) and nonzero z ∈ X. It is obvious that the collection
of all NL ’s is an open cover of L3

F (x) \I
(
Γ3
F (x)

)
. So by Covering

Theorem there is a countable and mutually disjoint subcover {Ns}∞j=1
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such that each Ns contains an I3
F -thin subsequence of (xjkl) ∈ X. Now

let

As = {(j, k, l) ∈ N× N× N : xjkl, z ∈ Ns = Ns (δ, λ) , s ∈ N}

for each δ > 0, λ ∈ (0, 1) and nonzero z ∈ X. It is clear that As ∈ I3
(s = 1, 2, ...) and Ar ∩ As = ∅. Then by (AP) property of I3 there is a
countable collection {Bs}∞s=1 of subsets of N such that B = ∪∞

s=1Bs ∈ I3
and As⧹B is a finite set for each s ∈ N. Let M = N× N× N\B =
{(jm, kn, lo) : m,n, o ∈ N} ⊂ N× N× N. Now the sequence y = (yjkl) ∈
X is defined by yjkl = xjmknlo if (m,n, o) ∈ B and yjkl = xjkl if (j, k, l) ∈
M . Obviously, {(j, k, l) ∈ N× N× N : xjkl ̸= yjkl} ⊂ B ∈ I3, so by The-
orem 3.7, I

(
Γ3
F (y)

)
= I

(
Γ3
F (x)

)
. Since As\B is finite set, the sequence

yB = (yjkl)(j,k,l)∈B has no limit point with respect to the random 2-

norm F that is not also an I3
F -limit point of y, i.e., L3

F (y) = I
(
Γ3
F (y)

)
.

Therefore, we have proved L3
F (y) = I

(
Γ3
F (x)

)
. □

4. Conclusion

The theory of random normed (RN) spaces is important area of re-
search in functional analysis. Much work has been done in this theory
and it has many important applications in real world problems. This
study aims to find out the use of the notions of I3-limt points, I3-cluster
points and ordinary limit points of triple sequences for demonstrating
some results in the area of random 2-normed space. With the help of
its applications, we give the relationship between I3-cluster points and
limit points in the topology induced by random 2-normed space (RTNS)
and acquired meaningful results for these notions. The results acquired
here are more common than corresponding results for normed spaces. It
is expected that new results will help to understand deeply the concept
of this new type of convergence on RTNS.

Acknowledgement. The authors thank to the referees for valuable
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the paper.
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[25] E. Savaş and M. Gürdal, I-statistical convergence in probabilistic normed
spaces, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys.
77(2015), 195-204.

[26] E. Savaş and M. Gürdal, Ideal convergent function sequences in random
2-normed spaces, Filomat 30(2016), 557-567.



On generalized statistical limit points 409
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