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Abstract. A generalization of Mallatâs classical multiresolution
analysis, based on the theory of spectral pairs, was considered in
two articles by Gabardo and Nashed. In this setting, the associated
translation set is no longer a discrete subgroup of R but a spectrum
associated with a certain one-dimensional spectral pair and the as-
sociated dilation is an even positive integer related to the given
spectral pair. In this paper, we are interested in the dual wavelets
whose construction depends on nonuniform multiresolution analysis
associated with linear canonical transform. Here we prove that if
the translates of the scaling functions of two multiresolution anal-
yses in linear canonical transform settings are biorthogonal, so are
the wavelet families which are associated with them. Under mild
assumptions on the scaling functions and the wavelets, we also show
that the wavelets generate Riesz bases.
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1. Introduction

Multiresolution analysis (MRA) is an important mathematical tool since
it provides a natural framework for understanding and constructing
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discrete wavelet systems. A multiresolution analysis is an increasing
family of closed subspaces {Vj : j ∈ Z} of L2(R) such that

⋂
j∈Z Vj =

{0} ,
⋃

j∈Z Vj is dense in L2(R) and which satisfies f ∈ Vj if and only

if f(2·) ∈ Vj+1. Furthermore, there exists an element φ ∈ V0 such that
the collection of integer translates of function φ, {φ(· − k) : k ∈ Z} rep-
resents a complete orthonormal system for V0. The function φ is called
the scaling function or the father wavelet. The concept of multiresolu-
tion analysis has been extended in various ways in recent years. These
concepts are generalized to L2

(
Rd
)
, to lattices different from Zd, allow-

ing the subspaces of multiresolution analysis to be generated by Riesz
basis instead of orthonormal basis, admitting a finite number of scaling
functions, replacing the dilation factor 2 by an integerM ≥ 2 or by an ex-
pansive matrix A ∈ GLd(R) as long as A ⊂ AZd. But in all these cases,
the translation set is always a group. Recently, Gabardo and Nashed
in[21, 22] defined a multiresolution analysis associated with a transla-
tion set {0, r/N}+ 2Z, where N ≥ 1 is an integer, 1 ≤ r ≤ 2N − 1, r is
an odd integer and r,N are relatively prime, a discrete set which is not
necessarily a group. They call this an NUMRA. As, the case N = 1 re-
duces to the standard definition of MRA with dyadic dilation. NUMRA
with multiplicity D, is called NUMRA-D that generalizes a particular
case of a result of Calogero and Garrigos [17] on biorthogonal MRA’s of
multiplicity D in nonstandard setup. A study with respect to NUMRA
has been done by many authors in the references [2, 3, 4, 5, 6, 28, 29].

The concept of biorthogonal wavelets plays an important role in ap-
plications. We refer to [16, 17, 18, 19, 25, 26] for various aspects of this
theory on R. For the higher dimensional situation on Rn, we refer to
the article [26].

In the early 1970s, a promising linear integral transform with three
free parameters, namely, linear canonical transform was independently
introduced by Collins [20] in paraxial optics, and Moshinsky, and Quesne
[27] in quantum mechanics, to study the conservation of information and
uncertainty under linear maps of phase space. The LCT provides a uni-
fied treatment of the generalized Fourier transforms in the sense that
it is an embodiment of several well-known integral transforms includ-
ing the Fourier transform, fractional Fourier transform, Fresnel trans-
form, scaling operations and so on [1, 23, 24, 30]. Over a couple of
decades, the application areas for LCT have been growing at an expo-
nential rate and is as such befitting for investigating deep problems in
time-frequency analysis, filter design, phase retrieval problems, pattern
recog- nition, radar analysis, holographic three-dimensional television,
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quantum physics, and many more. Apart from applications, the theo-
retical skeleton of LCT has likewise been extensively studied and inves-
tigated including the convolution theorems, sampling theorems, Pois-
son sum- mation formulae, uncertainty principles, shift-invariant theory
and so on. For more about LCT and their applications, we allude to
[7, 8, 9, 10, 11, 12, 13, 14, 15]. In this article we construct dual wavelets
which depend on Nonuniform Multiresolution Analysis associated with
linear canonical transform. We show that if ϕ and ϕ̃ are the scaling
functions of two multiresolution analyses (LCT-MRAs) such that their
translates are biorthogonal, then the associated families of wavelets are
also biorthogonal. Under mild decay conditions on the scaling functions
and the wavelets, we also show that the wavelets generate Riesz bases
for L2

(
R
)
.

The article is organized as follows. In section 2, we give a brief in-
troduction about LCT nonuniform wavelets on R. In section 3, we find
necessary and sufficient conditions for the translates of a function to
form a Riesz basis for its closed linear span. In the last section, we
prove that the wavelets associated with dual MRAs are biorthogonal
and generate Riesz bases for L2(R).

2. Preliminaries

In mathematics, a unimodular matrix M is a square integer matrix
having determinant +1 or −1. For the sake of simplicity, we consider
the second order matrix M2×2 = (A,B,C,D) with its transpose defined
by MT

2×2 = (A,B,C,D)T . Let us first introduce the definition of Linear
Canonical Transform.

Definition 2.1. The linear canonical transform of any f ∈ L2(R) with
respect to the unimodular matrix M2×2 = (A,B,C,D)is defined by

L[f ](ζ) =


∫
R f(t)KM(t, ζ)dt B ̸= 0

√
D exp CDζ2

2 f(Dζ) B = 0.

(2.1)

where KM(t, ζ) is the kernel of linear canonical transform and is given
by

KM(t, ζ) =
1√
2πιB

exp

{
ι(At2 − 2tζ +Dζ2)

2B

}
, B ̸= 0

It is here noted that for the case B = 0, the LCT defined by equa-
tion (2.1) corresponds to a chirp multiplication operation and is there-
fore of no particular interest to us. As such, in the rest of the arti-
cle, we will keep our focus on the case when B ̸= 0. It is here worth
noticing that the phase-space transform (2.1) is lossless if and only if
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the matrix M is unimodular; that is, AD − BC = 1. Several spe-
cial transforms can be obtained from the linear canonical transform
(2.1). For example, for M = (1, B, 0, 1), gives the Fresnel transform,
for M = (cos θ, sin θ,− sin θ, cos θ) the LCT yields us the fractional
Fourier transform whereas for M = (0, 1,−1, 0), we reach at the classi-
cal Fourier transform. Moreover, Bi-lateral Laplace, Gauss-Weierstrass,
and Bargmann transform are also its special cases.

The inversion formula corresponding to linear canonical transform
(2.1) is defined by

f(t) =

∫
R
L[f ](ζ)KM(t, ζ)dζ.

Morever the well known Parsevel’s formula of the linear canonical
transform (2.1) may be stated as

⟨L[f ],L[g]⟩ = ⟨f, g⟩ , for all f, g, L2(R).

Definition 2.2. Given a real uni-modular matrix M = (A,B,C,D) and
integers N ≥ 1 and r odd with 1 ≤ r ≤ 2N − 1 such that r and N are
relatively prime, an associated linear canonical nonuniform multiresolu-
tion analysis (abbreviated LCT-NUMRA) is a collection

{
VM
j : j ∈ Z

}
of closed subspaces of L2(R) satisfying the following properties:

(1) VM
j ⊂ VM

j+1 for all j ∈ Z;
(2)

⋃
j∈Z V

M
j is dense in L2(R);

(3)
⋂

j∈Z V
M
j = {0};

(4) f(t) ∈ VM
j if and only if f(2Nt) e−iπA

(
1−(2N)2

)
t2/B ∈ VM

j+1 for all j ∈
Z;

(5) There exists a function ϕ in VM
0 such that

{
ϕM0,λ(t) = ϕ(t −

λ) e−
iπA
B

(t2−λ2) : λ ∈ Λ
}
, is a complete orthonormal basis for

VM
0 .

Since ϕ ∈ VM
0 ⊂ VM

1 and the collection
{
ϕM1,λ : λ ∈ Λ

}
is an orthonormal

basis in VM
1 , hence, the function ϕ ∈ VM

1 has the Fourier expansion as

ϕ(t) =
∑
λ∈Λ

aλ ϕ
M
1,λ(t) =

√
2N
∑
λ∈ζ

aλϕ
(
2Nt− λ

)
e−

iπA
B

(t2−λ2), (2.2)

where

aλ =

∫
R
ϕ(t) e−iπAt2/B ϕM1,λ(t) dt and

∑
λ∈Λ

|aλ|2 <∞. (2.3)
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Implementing the linear canonical transform on both sides of above
equation, we have,

LM

[
ϕ(t)

]
(ζ) = ϕ̂

(
ζ

B

)
= ΛM

0

(
ζ

2NB

)
ϕ̂

(
ζ

2NB

)
, (2.4)

where

ΛM
0

(
ζ

B

)
=

1√
2N

∑
λ∈Λ

aMλ e−2πiλζ/B. (2.5)

For each j ∈ Z and real matrix M = (A,B,C,D), the LCT wavelet
subspace WM

j is defined as the orthogonal complement of VM
j in VM

j+1,

so that WM
j ⊥ VM

j . It is clear from the conditions (1), (2) and (3) of
the Definition 2.2 that

L2(R) =
⊕
j∈Z

WM
j .

Definition 2.3. A set of functions
{
ψM
1 , ψ

M
2 , . . . , ψ

M
2N−1

}
in L2

(
R) will

be called a set of basic wavelets associated with a given LCT-NUMRA if

the family of functions
{
ψℓ(t− λ)e−

−ιπA
B

(t2−λ2) : 1 ≤ ℓ ≤ 2N − 1, λ ∈ Λ
}

forms an orthonormal basis for WM
0 .

Assume that there exists (2N − 1) functions
{
ψM
1 , ψ

M
2 , . . . , ψ

M
2N−1

}
in

L2(R) such that their translates by the elements of Λ and dilations by
the integer powers of 2N form a Riesz basis of WM

j , i.e.,

WM
j = Span

{
ψM
ℓ,j,λ : 1 ≤ ℓ ≤ 2N − 1, λ ∈ Λ

}
, j ∈ Z (2.6)

where

ψM
ℓ,j,λ(t) = (2N)j/2 ψℓ

(
(2N)jt− λ

)
e−

iπA
B

(t2−λ2), 1 ≤ ℓ ≤ 2N − 1, λ ∈ Λ.
(2.7)

Since the closed subspace VM
1 can be decomposed as VM

1 = VM
0 ⊕WM

0 ,
so we have ψM

ℓ (t) ∈WM
0 ⊆ VM

1 , for 1 ≤ ℓ ≤ 2N−1 and every fixedM =
(A,B,C,D), and as a consequence, there exist a sequence

{
bℓ,λ
}
λ∈Λ with∑

λ∈Λ
∣∣bℓ,λ∣∣2 <∞ such that

ψM
ℓ,0,0(t) =

√
2N

∑
λ∈Λ

bℓ,λ ϕ
(
2Nt− λ)e−

iπA
B

(t2−λ2), (2.8)

which has an equivalent form in the LCT domain

ψ̂M
ℓ

(
ζ

B

)
= ΛM

k

(
ζ

2NB

)
ϕ̂

(
ζ

2NB

)
, (2.9)

where

ΛM
ℓ

(
ζ

B

)
=

1√
2N

∑
λ∈Λ

bMℓ,λ e
−2πiλζ/B. (2.10)
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A Schauder basis (xn) for any Hilbert space H is a Riesz Basis if it is
equivalent to an orthonormal basis. Obviously any orthonormal basis
is a Riesz basis. Mathematically we can say that if H is a seperable
Hilbert space, then (xn) is a Riesz basis if and only if every x ∈ H
can be uniquely expressed as x =

∑
n∈N knxn and there exists positive

constants A and B, which we call as Riesz constants, such that

A
∑
n∈N

|kn|2 ≤ ∥
∞∑
n=1

knxn∥2 ≤ B
∑
n∈N

|kn|2

A kinder notion to the orthonormal basis is Riesz basis. When we sub-
stitute Riesz basis for orthonormal basis in the definition of an MRA,
we get Riesz MRA.

3. Translates of Riesz Bases

Let us begin this section with a necessary condition for the translates of
a function to be linearly independent

Lemma 3.1. Let ϕM, ϕ̃M ∈ L2(R) be given. Then
{
ϕM0,λ(t) = ϕ(t −

λ) e−
iπA
B

(t2−λ2) : λ ∈ Λ
}
, is biorthogonal to

{
ϕ̃M0,λ(t) = ϕ̃(t−λ) e−

iπA
B

(t2−λ2) :

λ ∈ Λ
}
if and only if

∑
λ∈Λ

ϕ̂

(
ζ

B
+ λ

)
ˆ̃
ϕ

(
ζ

B
+ λ

)
= 1 a.e ζ ∈ R.

Proof. For λ, σ ∈ Λ, it follows that
〈
ϕM0,λ, ϕ̃

M
0,σ

〉
= e−

iπA
B

(λ2−σ2)δλ,σ ⇔〈
ϕM, ϕ̃M0,σ

〉
= e

iπA
B

(σ2)δ0,σ. Now in LCT domain we have

δλ,σ =
1

B

∫
R
φ̂

(
ζ

B

) ̂̃φ( ζ
B

)
e

2πiζ
B

(λ−σ) dζ,

δ0,σ =
1

B

∫
R
φ̂

(
ζ

B

) ̂̃φ( ζ
B

)
e−

2πiζσ
B dζ.

Since
{
e−

2πiζσ
B : σ ∈ Λ

}
is an orthonormal basis of L2

[
0, B2

)
,using this

fact we obtain the desired result. □

We now provide a sufficient condition for the translates of a function to
be linearly independent.
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Lemma 3.2. Let ϕM ∈ L2(R). Suppose there exists two constants
P,Q > 0 such that

P ≤
∑
λ∈Λ

∣∣∣∣ϕ̂( ζB + λ

)∣∣∣∣2 ≤ Q for a.e ζ ∈ R. (3.1)

Then
{
ϕM0,λ(t) = ϕ(t− λ) e−

iπA
B

(t2−λ2) : λ ∈ Λ
}
,is linearly independent.

Proof. For the proof of the Lemma, it is sufficient to find another func-
tion say ϕ̃M whose translates are biorthogonal to ϕM. Let us define the
function ϕ̃M by

ˆ̃
ϕ(
ζ

B
) =

ϕ̂( ζ
B )∑

λ∈Λ

∣∣∣∣ϕ̂( ζB + λ)

∣∣∣∣2
.

By equation (3.1), ϕ̃M is well defined. Now

∑
σ∈Λ

ϕ̂

(
ζ

B
+ σ

)
ˆ̃
ϕ

(
ζ

B
+ σ

)
=

∑
σ∈Λ

ϕ̂

(
ζ

B
+ σ

) ϕ̂
(

ζ
B + σ

)
∑

λ∈Λ

∣∣∣ϕ̂( ζ
B + λ+ σ

)∣∣∣2

=

∑
σ∈Λ

∣∣∣∣ϕ̂( ζB + σ

)∣∣∣∣2
∑
ν∈Λ

∣∣∣∣ϕ̂( ζB + ν

)∣∣∣∣2
= 1.

Applying Lemma 3.1, it follows that
{
ϕM0,λ(t) = ϕ(t−λ) e−

iπA
B

(t2−λ2) : λ ∈
Λ
}
is linearly independent. This completes the proof of the Lemma. □

Lemma 3.3. Suppose that the scaling function ϕM0,λ satisfies inequality

(3.1). Also let f =
∑

λ∈Λ aλϕ(t−λ) e
− iπA

B
(t2−λ2) , where f ∈ span

{
ϕ(t−

λ)e−
iπA
B

(t2−λ2) : λ ∈ Λ
}
and

{
aλ
}
is a finite sequence. Define

ΛM
0

(
ζ

B

)
=

1√
2N

∑
λ∈Λ

aMλ e−2πiλζ/B.

then

P

∫ B/2

0

∣∣∣∣ΛM
0

(
ζ

B

)∣∣∣∣2 dζ ≤
∥∥f∥∥2

2
≤ Q

∫ B/2

0

∣∣∣∣ΛM
0

(
ζ

B

)∣∣∣∣2 dζ.
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Proof. Since f(t) =
∑

λ∈Λ aλϕ(t− λ) e−
iπA
B

(t2−λ2)

Taking LCT on both sides we have,

LM

[
f(t)

]
(ζ) = f̂

(
ζ

B

)
= ΛM

0

(
ζ

B

)
ϕ̂

(
ζ

B

)
Now by Parseval’s relation associated to LCT∫

R

∣∣f(t)∣∣2dt =

∫
R

∣∣∣∣f̂ ( ζB
)∣∣∣∣2 dζ

=

∫
R

∣∣∣∣ΛM
0

(
ζ

B

)∣∣∣∣2 ∣∣∣∣ϕ̂( ζB
)∣∣∣∣2 dζ

=

∫ B/2

0

∣∣∣∣ΛM
0

(
ζ

B

)∣∣∣∣2∑
λ∈Λ

∣∣∣∣ϕ̂( ζB + λ

)∣∣∣∣2 dζ
.

Hence, using inequality (3.1), we get the desired result. □

we are now ready to prove the main result of this section which shows
that how the translates of a biorthogonal function forms the Riesz basis.

Theorem 3.4. Let
{
ϕM0,λ(t) = ϕ(t − λ) e−

iπA
B

(t2−λ2) : λ ∈ Λ
}
, be a

Riesz basis for its closed linear span. Assume that there exists a func-

tion
{
ϕ̃M0,λ(t) = ϕ̃(t − λ) e−

iπA
B

(t2−λ2) : λ ∈ Λ
}
, which is biorthogo-

nal to
{
ϕM0,λ(t) = ϕ(t − λ) e−

iπA
B

(t2−λ2) : λ ∈ Λ
}
,. Then for every

f ∈ span
{
ϕ(t− λ) e−

iπA
B

(t2−λ2) : λ ∈ Λ
}
, we have

f =
∑
λ∈Λ

〈
f, ϕ̃(t− λ) e−

iπA
B

(t2−λ2)
〉
ϕ(t− λ) e−

iπA
B

(t2−λ2); (3.2)

and there exists constants P,Q > 0 such that

P
∥∥f∥∥2

2
≤
∑
λ∈Λ

∣∣∣∣〈f, ˆ̃ϕ( ζB − λ)

〉∣∣∣∣2 ≤ Q
∥∥f∥∥2

2
. (3.3)

Proof. We first prove (3.2) and (3.3) for any f ∈ span
{
ϕ(t−λ) e−

iπA
B

(t2−λ2) :

λ ∈ Λ
}
and then generalize it to span

{
ϕ(t − λ) e−

iπA
B

(t2−λ2) : λ ∈ Λ
}
.

Assume that f ∈ span
{
ϕ(t−λ) e−

iπA
B

(t2−λ2
: λ ∈ Λ

}
, then there exists a
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finite sequence
{
aλ : λ ∈ Λ

}
such that f =

∑
λ∈Λ aλϕ(t−λ) e

− iπA
B

(t2−λ2).
Using biorthogonality, we obtain

〈
f, ϕ̃(t− σ) e−

iπA
B

(t2−λ2)
〉

=

〈∑
λ∈Λ

aλφ(t− λ) e−
iπA
B

(t2−λ2
, ϕ̃(t− σ) e−

iπA
B

(t2−λ2)

〉
=
∑
λ∈Λ

aλ
〈
ϕ(t− λ) e−

iπA
B

(t2−λ2
, ϕ̃(t− σ) e−

iπA
B

(t2−λ2)
〉

= aλ.

This proves (3.2). In order to prove (3.3), we make use of Lemma 3.3 to
get

Q−1
∥∥f∥∥2

2
≤
∫ B/2

0

∣∣∣∣ΛM
0

(
ζ

B

)∣∣∣∣2 dζ ≤ P−1
∥∥f∥∥2

2
.

Therefore, using the Plancherel formula associated with LCT and the

fact that aλ =
〈
f, ϕ̃M0,λ

〉
, we have∫ B/2

0

∣∣ΛM
0 (

ζ

B
)
∣∣2dζ =

∑
λ∈Λ

∣∣aλ∣∣2 =∑
λ∈Λ

∣∣∣〈f, ϕ̃(t− λ)e−
iπA
B

(t2−λ2)
〉∣∣∣2 .

This proves (3.3). We now generalize the results to

span
{
ϕ(t− λ)e−

iπA
B

(t2−λ2) : λ ∈ Λ
}
. Let us first prove (3.3). For f ∈

span
{
ϕ̃(t− λ)e−

iπA
B

(t2−λ2) : λ ∈ Λ
}
, there exists a sequence {fm : m ∈

Z} in span
{
ϕ̃(t− λ)e−

iπA
B

(t2−λ2) : λ ∈ Λ
}

such that ∥fm − f∥2 → 0 as

m→ ∞. Thus for each λ ∈ Λ, we have〈
fm, ϕ̃(t− λ)e−

iπA
B

(t2−λ2)
〉
→
〈
f, ϕ̃(t− λ)e−

iπA
B

(t2−λ2)
〉

as m→ ∞.

So the result holds for each fm. Therefore,

∑
λ∈Λ

∣∣∣〈f, ϕ̃(t− λ)e−
iπA
B

(t2−λ2)
〉∣∣∣2 =

∑
λ∈Λ

lim
m→∞

∣∣∣〈fm, ϕ̃(t− λ)e−
iπA
B

(t2−λ2)
〉∣∣∣2

= lim
m→∞

∑
λ∈Λ

∣∣∣〈fm, ϕ̃(t− λ)e−
iπA
B

(t2−λ2)
〉∣∣∣2

≤ Q lim
m→∞

∥∥fm∥∥22
= Q

∥∥f∥∥2
2
.
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Thus, the upper bound holds in (3.3). Further, we have{∑
λ∈Λ

∣∣∣〈fm, ϕ̃(t− λ)e−
iπA
B

(t2−λ2)
〉∣∣∣2}1/2

≤

{∑
λ∈Λ

∣∣∣〈fm − f, ϕ̃(t− λ)e−
iπA
B

(t2−λ2)
〉∣∣∣2}1/2

+

{∑
λ∈Λ

∣∣∣〈f, ϕ̃(t− λ)e−
iπA
B

(t2−λ2)
〉∣∣∣2}1/2

.

As the upper bound in (3.3) holds for fm − f and lower bound for each
fm, we get

P 1/2
∥∥fm∥∥2 ≤ Q1/2

∥∥fm − f
∥∥
2
+

(∑
λ∈Λ

∣∣∣〈fm, ϕ̃(t− λ)e−
iπA
B

(t2−λ2)
〉∣∣∣2)1/2

,

from which, it follows that

P
∥∥f∥∥2

2
≤
∑
λ∈Λ

∣∣∣〈f, ϕ̃(t− λ)e−
iπA
B

(t2−λ2)
〉∣∣∣2 .

This proves (3.3). Similarly, we can prove (3.2) for

f ∈ span
{
ϕ(t− λ)e−

iπA
B

(t2−λ2) : λ ∈ Λ
}
and the proof of the theorem is

complete. □

4. Biorthogonal Nonuniform Wavelets related to LCT

Let {VM
j : j ∈ Z} and {ṼM

j : j ∈ Z} be biorthogonal LCT-NUMRA’s

with scaling functions ϕM and ϕ̃M. Then there exists integral periodic
functions Λ0 and Λ̃0 such that ϕ̂( ζ

B ) = ΛM
0 (ζ/2NB) ϕ̂ (ζ/2NB) and

ˆ̃
ϕ(ζ/B) = Λ̃M

0 (ζ/2NB)
ˆ̃
ϕ (ζ/2NB). Suppose there exists integral peri-

odic functions ΛM
ℓ and Λ̃M

ℓ , 1 ≤ ℓ ≤ 2N − 1 such that

ΛM(ζ/B)Λ̃M(ζ/B) = 1, (4.1)

where

Λ
M

(ζ/B) =



ΛM
0

(
ζ

2NB

)
ΛM

0

(
ζ

2NB
+

1

4N

)
. . . ΛM

0

(
ζ

2NB
+

2N − 1

4N

)

ΛM
1

(
ζ

2NB

)
ΛM

1

(
ζ

2NB
+

1

4N

)
. . . ΛM

1

(
ζ

2NB
+

2N − 1

4N

)
.
.
.

.

.

.
. . .

.

.

.

ΛM
2N−1

(
ζ

2NB

)
ΛM

2N−1

(
ζ

2NB
+

1

4N

)
. . . ΛM

2N−1

(
ζ

2NB
+

2N − 1

4N

)


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and

Λ̃M(ζ/B) =



Λ̃M
0

(
ζ

2NB

)
Λ̃M

0

(
ζ

2NB
+

1

4N

)
. . . Λ̃M

0

(
ζ

2NB
+

2N − 1

4N

)

Λ̃M
1

(
ζ

2NB

)
Λ̃M

1

(
ζ

2NB
+

1

4N

)
. . . Λ̃M

1

(
ζ

2NB
+

2N − 1

4N

)
.
.
.

.

.

.
. . .

.

.

.

Λ̃M
2N−1

(
ζ

2NB

)
m̃2N−1

(
ζ

2NB
+

1

4N

)
. . . Λ̃M

2N−1

(
ζ

2NB
+

2N − 1

4N

)


.

For 1 ≤ ℓ ≤ 2N − 1, define the associated wavelets as ψM
ℓ and ψ̃M

ℓ by

ψ̂M
ℓ

(
ζ

B

)
= ΛM

ℓ (ζ/2NB) ϕ̂ (ζ/2NB)

and
ˆ̃
ψM
ℓ

(
ζ

B

)
= Λ̃M

ℓ (ζ/2N)
ˆ̃
ϕ (ζ/2NB) .

Definition 4.1. A pair of LCT-NUMRA’s {VM
j : j ∈ Z} and {ṼM

j :

j ∈ Z} with scaling functions ϕM and ϕ̃M respectively are said to be

dual to each other if {ϕM(· − λ) : λ ∈ Λ} and {ϕ̃M(· − λ) : λ ∈ Λ} are
biorthogonal.

Definition 4.2. Let ϕM and ϕ̃M be scaling functions for dual LCT-
NUMRA’s. For each j ∈ Z, define the operators PM

j and P̃M
j on L2(R)

by

PM
j f =

∑
λ∈Λ

〈
f, ϕ̃Mj,λ

〉
ϕMj,λ and P̃M

j f =
∑
λ∈Λ

〈
f, ϕMj,λ

〉
ϕ̃Mj,λ,

respectively. Here ϕMj,λ = δjϕ
M(· − λ) and ϕ̃Mj,λ = δjϕ̃

M(· − λ). Same

is the case with ψM
j,λ and ψ̃M

j,λ. It is easy to verify that these operators

are uniformly bounded on L2(R) and both the series are convergent in
L2(R).

Remark 4.3. The operators PM
j and P̃M

j satisfy the following properties.

(a) PM
j f = f if and only if f ∈ VM

j and P̃M
j f = f if and only if

f ∈ ṼM
j .

(b) lim
j→∞

∥∥PM
j f −f

∥∥
2
= 0 and lim

j→−∞

∥∥PM
j f
∥∥
2
= 0 for every f ∈ L2(R).

We now show that the wavelets associated with dual MRAs are biorthog-
onal.

Theorem 4.4. Let ϕM and ϕ̃M be the scaling functions for dual LCT-
NUMRA’s and ψM

ℓ and ψ̃M
ℓ , 1 ≤ ℓ ≤ 2N − 1 be the associated wavelets

satisfying (4.1). Then, we have the following
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(a)
{
ψM
ℓ,0,λ : λ ∈ Λ

}
is biorthogonal to

{
ψ̃M
ℓ,0,σ : σ ∈ Λ

}
,

(b)
〈
ψM
ℓ,0,λ, ϕ̃

M
0,σ

〉
=
〈
ψ̃M
ℓ,0,λ, ϕ

M
0,σ

〉
, for all λ, σ ∈ Λ.

Proof. we have

∑
p∈Z

ψ̂M
ℓ

(
ζ

B
+
p

2

)
ˆ̃
ψM
ℓ

(
ζ

B
+
p

2

)

=
∑
p∈Z

{
ΛM
ℓ

(
ζ

2NB
+

p

4N

)
ϕ̂

(
ζ

2NB
+

p

4N

)

×Λ̃M
ℓ

(
ζ

2NB
+

p

4N

)
ˆ̃
ϕ

(
ζ

2NB
+

p

4N

)}

=

2N−1∑
s=0

∑
p∈Z

{
ΛM
ℓ

(
ζ

2NB
+
p

2
+

s

4N

)
ϕ̂

(
ζ

2NB
+
p

2
+

s

4N

)

×Λ̃M
ℓ

(
ζ

2NB
+
p

2
+

s

4N

)
ˆ̃
ϕ

(
ζ

2NB
+
p

2
+

s

4N

)}

=
2N−1∑
s=0

{
ΛM
ℓ

(
ζ

2NB
+

s

4N

)
Λ̃M
ℓ

(
ζ

2NB
+

s

4N

)}
= 1.

Hence, by Lemma 3.1,
{
ψM
ℓ,0,λ : λ ∈ Λ

}
is biorthogonal to

{
ψ̃M
ℓ,0,λ : λ ∈

Λ
}
. This proves part (a). To prove part (b), we have for, λ, σ ∈ Λ

〈
ψM
ℓ,0,λ, ϕ̃

M
0,σ

〉
=

〈
ψℓ(t− λ)e−

iπA
B

(t2−λ2
, ϕ̃(t− σ)e−

iπA
B

(t2−σ2〉
= eiπ

A
B
(λ2−σ2)

∫
R
ψℓ(t− λ) ϕ̃(t− σ) dt
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In LCT domain we have by Parseval’s identity,

=
eiπ

A
B
(λ2−σ2)

B

∫
R
ψ̂ℓ

(
ζ

B

) ̂̃
ϕ

(
ζ

B

)
e−

2πiζ
B

(λ−σ) dζ.

=
eiπ

A
B
(λ2−σ2)

B

∫
R
ΛM
ℓ

(
ζ

2NB

)
ϕ̂

(
ζ

2NB

)
Λ̃M
0

(
ζ

2NB

)
ˆ̃
ϕ

(
ζ

2NB

)
e−

2πiζ
B

(λ−σ)dζ

=
eiπ

A
B
(λ2−σ2)

B

∫ B/2

0

∑
p∈Z

{
ΛM
ℓ

(
ζ

2NB
+

p

4N

)
ϕ̂

(
ζ

2NB
+

p

4N

)

×Λ̃M
0

(
ζ

2NB
+

p

4N

)
ˆ̃
ϕ

(
ζ

2NB
+

p

4N

)}
e−

2πiζ
B

(λ−σ)dζ

=
eiπ

A
B
(λ2−σ2)

B

∫ B/2

0

2N−1∑
s=0

∑
p∈Z

{
ΛM
ℓ

(
ζ

2NB
+
p

2
+

s

4N

)

ϕ̂

(
ζ

2NB
+
p

2
+

s

4N

)
×Λ̃M

0

(
ζ

2NB
+
p

2
+

s

4N

)
ˆ̃
ϕ

(
ζ

2NB
+
p

2
+

s

4N

)}
e−

2πiζ
B

(λ−σ)dζ

=
eiπ

A
B
(λ2−σ2)

B

∫ B/2

0

2N−1∑
s=0

{
ΛM
ℓ

(
ζ

2NB
+

s

4N

)
Λ̃M
0

(
ζ

2NB
+

s

4N

)}
e−

2πiζ
B

(λ−σ)dζ

= 0.

The dual one can also be shown equal to zero in a similar manner. This
proves part (b) and hence completes the proof of the theorem. □

we are now ready to construct the Riesz basis for L2(R), which is evident
from the following results:

Theorem 4.5. Let ϕM and ϕ̃M and ψM
ℓ and ψ̃M

ℓ , 1 ≤ ℓ ≤ 2N−1 be as in

Theorem 4.4. Let ψM
0 = ϕM and ψ̃M

0 = ϕ̃M. Then for every f ∈ L2(R),
we have

PM
1 f = PM

0 f +
2N−1∑
ℓ=1

∑
λ∈Λ

〈
f, ψ̃M

ℓ,0,λ

〉
ψM
ℓ,0,λ (4.2)
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and

P̃M
1 f = P̃M

0 f +

2N−1∑
ℓ=1

∑
λ∈Λ

〈
f, ψM

ℓ,0,λ

〉
ψ̃M
ℓ,0,λ. (4.3)

where the series in (4.2) and (4.3) converges in L2(R).

Proof. For the sake of convenience, we will only prove (4.2), as (4.3) is
an easy consequence. In particular, we will prove it in the weak sense
only. For this, let f, g ∈ L2(R). Then, we have

2N−1∑
ℓ=0

∑
λ∈Λ

〈
f, ψ̃M

ℓ,0,λ

〉 〈
g, ψM

ℓ,0,λ

〉
=

2N−1∑
ℓ=0

∑
λ∈Λ

〈
f, ψ̃ℓ(t− λ) e−iπA

B
(t2−λ2)

〉 〈
g, ψℓ(t− λ) e−iπA

B
(t2−λ2)

〉
Now in LCT domain after simplyfing above we have
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=
2N−1∑
ℓ=0

∫ B/2

0

∑
p∈Z

f̂

(
ζ

B
+
p

2

)
ˆ̃
ψℓ

(
ζ

B
+
p

2

)
×

∑
q∈Z

ĝ

(
ζ

B
+
q

2

)
ψ̂ℓ

(
ζ

B
+
q

2

) dζ

=

∫ B/2

0

2N−1∑
ℓ=0

∑
p∈Z

f̂

(
ζ

B
+
p

2

)
Λ̃M
ℓ

(
ζ

2NB
+

p

4N

)
ˆ̃
ϕ

(
ζ

2NB
+

p

4N

)

×
∑
q∈Z

ĝ

(
ζ

B
+
q

2

)
ΛM
ℓ

(
ζ

2NB
+

q

4N

)
ϕ̂

(
ζ

2NB
+

q

4N

) dζ

=

∫ B/2

0

2N−1∑
ℓ=0


2N−1∑
r=0

∑
p′∈Z

f̂

(
ζ

B
+
p′

2
N +

r

2

)
Λ̃M
ℓ

(
2NB

+
r

4N
+
p′

2

)

× ˆ̃
ϕ

(
ζ

2NB
+

r

4N
+
p′

2

)
×

2N−1∑
s=0

∑
q′∈N0

ĝ

(
ζ

B
+
q′

2
N +

s

2

)
ΛM
ℓ

(
ζ

2NB
+

s

4N
+
q′

2

)

× ϕ̂

(
ζ

2NB
+

s

4N
+
q′

2

)}
dζ

=

∫ B/2

0

2N−1∑
r=0

∑
p′∈Z

2N−1∑
s=0

∑
q′∈N0{

2N−1∑
ℓ=0

Λ̃M
ℓ

(
ζ

2NB
+

r

4N

)
ΛM
ℓ

(
ζ

2NB
+

s

4N

)}

×f̂
(
ζ

B
+
p′

2
N +

r

2

)
ˆ̃
ϕ

(
ζ

2NB
+

r

4N
+
p′

2

)
ĝ

(
ζ

B
+
q′

2
N +

s

2

)
×ϕ̂
(

ζ

2NB
+

s

4N
+
q′

2

)
dζ

=

∫ B/2

0

∑
p′∈Z

∑
q′∈N0

2N−1∑
s=0

f̂

(
ζ

B
+
p′

2
N +

s

2

)
ˆ̃
ϕ

(
ζ

2NB
+

s

4N
+
p′

2

)

×ĝ
(
ζ

B
+
q′

2
N +

s

2

)
ϕ̂

(
ζ

2NB
+

s

4N
+
p′

2

)
dζ

=
2N−1∑
s=0

∫ s+B/2

0

∑
p′∈Z

∑
q′∈N0

f̂

(
ζ

B
+
p′

2
N

)
ˆ̃
ϕ

(
ζ

2NB
+
p′

2

)

×ĝ
(
ζ

B
+
q′

2
N

)
ϕ̂

(
ζ

2NB
+
p′

2

)
dζ.
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Moreover, proceeding in same way we have,∑
λ∈Λ

〈
f, ϕ̃M1,λ

〉〈
g, ϕM1,λ

〉
=

∫ B/2

0

∑
p∈Z

f̂

(
ζ

B
+
p

2
N

)
ˆ̃
ϕ

(
ζ

2NB
+
p

2

)
dζ

∫ B/2

0

∑
q∈Z

ĝ

(
ζ

B
+
q

2
N

)
ϕ̂

(
ζ

2NB
+
q

2

)
dζ

=

∫ B/2

0

∑
p∈Z

f̂

(
ζ

B
+
p

2
N

)
ˆ̃
ϕ

(
ζ

2NB
+
p

2

)
dζ

∫ 1/2

0

∑
q∈Z

ĝ

(
ζ

B
+
q

2
N

)
ϕ̂

(
ζ

2NB
+
q

2

)
dζ

=

∫ B/2

0

∑
p∈Z

∑
q∈Z

f̂

(
ζ

B
+
p

2
N

)
ˆ̃
ϕ

(
ζ

2NB
+
p

2

)
ĝ

(
ζ

B
+
q

2
N

)

ϕ̂

(
ζ

2N
+
q

2

)
dζ.

Combing above expressions , we get the desired result. □

Theorem 4.6. Let ϕM and ϕ̃M and ψM
ℓ and ψ̃M

ℓ , 1 ≤ ℓ ≤ 2N − 1 be as
in Theorem 4.1. Then, for every f ∈ L2(R), we have

f =
2N−1∑
ℓ=1

∑
j∈Z

∑
λ∈Λ

〈
f, ψ̃M

ℓ,j,λ

〉
ψM
ℓ,j,λ =

2N−1∑
ℓ=1

∑
j∈Z

∑
λ∈Λ

〈
f, ψM

ℓ,j,λ

〉
ψ̃M
ℓ,j,λ, (4.4)

where the series converges in L2(R).

Proof. Using Remark 4.3 and Theorem 4.5, proof of Theorem 4.6 follows.
□

Theorem 4.7. Let ϕM and ϕ̃M be the scaling functions for dual LCT-
NUMRA’s and ψM

ℓ and ψ̃M
ℓ , 1 ≤ ℓ ≤ 2N − 1 be the associated wavelets

satisfying the matrix condition (4.1). Then, the collection
{
ψM
ℓ,j,λ : 1 ≤

ℓ ≤ 2N − 1, j ∈ Z, λ ∈ Λ
}
and

{
ψ̃M
ℓ,j,λ : 1 ≤ ℓ ≤ 2N − 1, j ∈ Z, λ ∈ Λ

}
are biorthogonal

Proof. First we show that
{
ψM
ℓ,j,λ : 1 ≤ ℓ ≤ 2N − 1, j ∈ Z, λ ∈ Λ

}
and{

ψ̃M
ℓ,j,λ : 1 ≤ ℓ ≤ 2N − 1, j ∈ Z, λ ∈ Λ

}
are biorthogonal to each other.

For this, we will show that for each ℓ, 1 ≤ ℓ ≤ 2N − 1 and j ∈ Z,〈
ψM
ℓ,j,λ, ψ̃

M
ℓ,j,σ

〉
= e−iπA

B
(λ2−σ2)δλ,σ. (4.5)
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We have in fact already proved (4.5) for j = 0. For j ̸= 0, we have〈
ψM
ℓ,j,λ, ψ̃

M
ℓ,j,σ

〉
=
〈
PM
−jψ

M
ℓ,0,λ, P

M
−jψ̃

M
ℓ,0,σ

〉
=
〈
ψM
ℓ,0,λ, ψ̃

M
ℓ,0,σ

〉
= e−iπA

B
(λ2−σ2)δλ,σ.

For fixed λ, σ ∈ Λ and j, j′ ∈ Z with j < j′, we claim that〈
ψM
ℓ,j,λ, ψ̃

M
ℓ′,j′,σ

〉
= 0. (4.6)

As ψM
ℓ,0,λ ∈ VM

1 , hence ψM
ℓ,j,λ = PM

−jψ
M
ℓ,0,λ ∈ VM

j+1 ⊆ VM
j′ . Therefore, it

is enough to show that ψ̃M
ℓ′,j′,σ is orthogonal to every element of VM

j′ .

Let f ∈ VM
j′ . Since

{
ϕMj′,λ : λ ∈ Λ

}
is a Riesz basis for VM

j′ , hence there

exists an l2-sequence
{
dλ : λ ∈ Λ

}
such that f =

∑
λ∈Λ dλϕ

M
j′,λ in L2(R).

Using part (b) of Remark 4.3, we have〈
ψ̃M
ℓ′,j′,σ, ϕ

M
j′,λ

〉
=
〈
PM
−j′ψ̃

M
ℓ′,0,σ, P

M
−j′φ0,λ

〉
= 0.

Therefore,〈
ψ̃M
ℓ′,j′,σ, f

〉
=
〈
ψ̃M
ℓ′,j′,σ,

∑
λ∈Λ

dλϕ
M
j′,λ

〉
=
∑
λ∈Λ

dλ
〈
ψ̃M
ℓ′,j′,σ, ϕ

M
j′,λ

〉
= 0.

This completes the proof. □

Acknowledgments

We are grateful to two anonymous referees for carefully reading the man-
uscript, detecting many mistakes and for offering valuable comments and
suggestions which enabled us to substantially improve the paper. This
work is supported by the Research Grant (No. JKST&IC/SRE/J/357-
60) provided by JKSTIC, Govt. of Jammu and Kashmir, India.

References

[1] L.B. Almeida, The fractional Fourier transform and time-frequency repre-
sentations. IEEE Trans. Signal Process. 42(11), 3084-3091 (1994)

[2] M. Y. Bhat, Dual wavelets associated with nonuniform MRA, Tamkang J.
Maths 50 (2019) pp 119-132

[3] M. Y. Bhat, Nonuniform discrete wavelets on local fields of positive char-
acteristic, Comp. Anal. Opr. Thry. 13 (2019) pp 2203-2228

[4] M. Y. Bhat, Necessary condition and sufficient conditions for nonuniform
wavelet frames in L2(K), Int. J. Wavelets Multr. Info. Process. 16 (2018)
1850005

[5] M. Y. Bhat and A. H. Dar, wavelets packets associated with linear canoni-
cal transform on spectrum, Int. J. Wavelets Multr. Info. Process Accepted
(2021)

[6] M. Y. Bhat and A. H. Dar, wavelets frames associated with linear canonical
transform on spectrum, Int. J. non Lin. Anal Appl.13(2)(2022) pp 2297-
2310

[7] M. Y. Bhat and A. H. Dar, Wavelet packets associated with linear canonical
transform on spectrum, Int. J. Wavelts Multi. Infor. Process. 6 (2021)
2150030.



478 M. Younus Bhat, Aamir H. Dar

[8] M. Y. Bhat and A. H. Dar, Vector-Valued Nonuniform Multiresolution
Analysis Associated with Linear Canonical Transform , preprint. (2020).

[9] M. Y. Bhat and A. H. Dar, Octonion Spectrum of 3D Short-time LCT
Signals, Optik - International Journal for Light and Electron Optics, 261
(2022) 169156

[10] M. Y. Bhat and A. H. Dar, Quadratic-phase wave packet transform, Optik
- International Journal for Light and Electron Optics, 261 (2022) 169120

[11] M. Y. Bhat and A. H. Dar, Scaled Wigner distribution in the offset linear
canonical domain, Optik - International Journal for Light and Electron
Optics, 262 (2022) 169286

[12] M. Y. Bhat and A. H. Dar, Multiresolution analysis for linear canonical S
transform; Advan. Opr. Thy. 68 (2021), 1-11

[13] M. Y. Bhat and A. H. Dar, Fractional vector-valued nonuniform MRA
and associated wavelet packets on L2(R,CM ), Frac. Cal. Appld. Anal.,
25(2022) 687-719.

[14] M.Y Bhat, A.H Dar, Convolution and Correlation Theorems for Wigner-
Ville Distribution Associated with the Quaternion Offset Linear Canonical
Transform; SIVP. 16 (2022)1235–1242

[15] A. Bultheel and H. Martınez-Sulbaran, Recent developments in the theory
of the fractional Fourier and linear canonical transforms. Bull. Belg. Math.
Soc. 13, 971-1005 (2006)

[16] M. Bownik and G. Garrigos, Biorthogonal wavelets, MRA’s and shift-
invariant spaces, Studia Mathematica. 160 (2004), pp 231-248

[17] A. Calogero and G. Garrigos, A characterization of wavelet families arising
from biorthogonal MRA’s of multiplicity d, J. Geom. Anal. 11 (2001), pp
187-217.

[18] A. Cohen and I. Daubechies, A stability criterion for biorthogonal wavelet
bases and their related subband coding scheme, Duke Math. J.68 (1992),
pp 313-335.

[19] A. Cohen, I. Daubechies and J.C. Feauveau, Biorthogonal bases of com-
pactly supported wavelets, Comm. Pure Appl. Math. 45 (1992), pp 485-
560.

[20] S.A, Collins, Lens-system Diffraction integral written in terms of matrix
optics. J. Opt. Soc. Am. 60, 1168-1177 (1970)

[21] J. P. Gabardo and M. Z. Nashed, Nonuniform multiresolution analysis and
spectral pairs, J. Funct. Anal. 158 (1998) pp 209-241

[22] J. P. Gabardo and X. Yu, Wavelets associated with nonuniform multires-
olution analysis and one-dimensional spectral pairs. J. Math. Anal. Appl.
323 798-817 (2006)

[23] J. J. Healy, M. A. Kutay, H. M. Ozaktas, and J. T. Sheridan, Linear
Canonical Transforms, New York, Springer, (2016)

[24] D. F. James and G.S. Agarwal, The generalized Fresnel transform and its
applications to optics. Opt. Commun. 126, 207-212 (1996)

[25] H. O. Kim, R. Y. Kim and J. K. Lim, Characterizations of biorthogonal
wavelets which are associated with biorthogonal multiresolution analyses,
Appl. Comput. Harmon. Anal. 11 (2001), pp 263-272.

[26] R. Long and D. Chen, Biorthogonal wavelet bases on Rd, Appl. Comput.
Harmon. Anal. 2 (1995), pp 230-242.

[27] M. Moshinsky and C. Quesne, Linear canonical transformations and their
unitary representations. J. Math. Phys. 12(8) 1772-1780 (1971)



Nonuniform Dual Wavelets Associated with LCT 479

[28] F. A. Shah and M. Y. Bhat, Vector-valued nonuniform multiresolution
analysis on local fields. Int. J. Wavelets, Multiresolut. Inf. Process. 13(4)
Article Id: 1550029 (2015)

[29] F. A. Shah and M. Y. Bhat, Nonuniform wavelet packets on local fields of
positive characteristic. Filomat, 6 (2017) pp 1491-1505.

[30] R. Tao, B. Deng, and Y. Wang, Fractional Fourier Transform and its
Applications. Tsinghua University. Press, Beijing, (2009).


	1.  Introduction
	2.  Preliminaries 
	3. Translates of Riesz Bases 
	4. Biorthogonal Nonuniform Wavelets related to LCT
	Acknowledgments
	References

