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1. Introduction

In 1952, the concept of discrete frames for Hilbert spaces was introduced
by Duffin and Schaeffer [9] to study some problems in non-harmonic
Fourier series. Then Daubecheies, Grassman and Mayer [8] reintro-
duced and developed them. Various generalizations of frames e.g. frames
of subspaces, wavelet frames, g-frames, weighted and controlled frames
have developed, [5, 17, 23, 24]. Frame theory has used in many fields
such as filter bank theory, image processing, etc. we refer to [6] for
an introduction to frame theory in Hilbert spaces and its applications.
The concept of a generalization of frames to a family indexed by some
locally compact space endowed with a Radon measure were proposed
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by G. Kaiser [13] and independently by Ali, Antoine and Gazeau [1].
These frames are known as continuous frames. Also, controlled frames
have been introduced to improve the numerical efficiency of iterative
algorithms for inverting the frame operator on abstract Hilbert spaces,
see [3].

Frank and Larson [10] presented a general approach to the frame
theory in Hilbert C∗-modules. We refer the readers for a discussion of
frames in Hilbert C∗-modules to Refs. [2, 11, 14]. As Hilbert C∗-module,
it is a generalization of Hilbert spaces in that it allows the inner product
to take values in a C∗-algebra rather than the field of complex numbers.
There are many differences between Hilbert C∗-modules and Hilbert
spaces. For example, we know that any closed subspace in a Hilbert
space has an orthogonal complement, but it is not true for Hilbert C∗-
module. Thus it is more difficult to make a discussion the theory of
Hilbert C∗-modules than that of Hilbert spaces in general. We refer
the readers to [15, 18] for more details on Hilbert C∗-modules. The
theory of frames has extended from Hilbert spaces to Hilbert C∗-modules
[10, 12, 16, 19, 20, 21, ?, 22].

The paper is presented as follows. First, we recall the basic definitions
and some notations about Hilbert C∗-modules, and we also give some
properties of them so that we will use them in the later sections. In
Section 2, we introduce the notion of continuous ∗-frames and continuous
∗-C-controlled frames in Hilbert C∗-modules. We present some results
of frames in the view of continuous ∗-controlled frames. In section 3,
we define continuous ∗-(C,C ′)-controlled frames and then we investigate
multiplier operators for continuous ∗-(C,C ′)-controlled Bessel maps.

First, we recall some definitions and basic properties of Hilbert C∗-
modules. Throughout this paper, A shows a C∗-algebra.

Definition 1.1. A pre-Hilbert module over C∗-algebra A is a complex
vector space U which is also a left A-module equipped with an A-valued
inner product ⟨., .⟩ : U × U → A which is C-linear and A-linear in its
first variable and satisfies the following conditions:
(i) ⟨f, f⟩ ≥ 0,
(ii) ⟨f, f⟩ = 0 iff f = 0,
(iii) ⟨f, g⟩∗ = ⟨g, f⟩,
(iv) ⟨af, g⟩ = a⟨f, g⟩,
for all f, g ∈ U and a, b ∈ A.

A pre-Hilbert A-module U is called Hilbert A-module if U is complete

with respect to the topology determined by the norm ∥f∥ = ∥⟨f, f⟩∥
1
2 .

If A is a C∗-algebra, then it is a Hilbert A-module with respect to
the inner product

⟨a, b⟩ = ab∗, (a, b ∈ A).
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Example 1.2. Let l2(A) be the set of all sequences {an}n∈N of ele-
ments of a C∗-algebra A such that the series

∑∞
n=1 ana

∗
n is convergent

in A. Then l2(A) is a Hilbert A-module with respect to the pointwise
operations and inner product is defined by

⟨{an}n∈N, {bn}n∈N⟩ =
∞∑
n=1

anb
∗
n.

Let U and V be two Hilbert C∗-modules. The set of all bounded
A-module maps from U to V is denoted by HomA(U, V ) and we set
HomA(U,U) = EndA(U).
Let T ∈ HomA(U, V ), T is called adjointable if there exists a map
T ∗ ∈ HomA(V,U) such that

⟨Tx, y⟩ = ⟨x, T ∗y⟩
for all x ∈ U, y ∈ V . The set of all adjointable operators from U to V
is denoted by Hom∗

A(U, V ) and we set Hom∗
A(U,U) = End∗A(U). We

consider GL(U) as the set of all bounded linear invertible operators with
the bounded inverse.

2. Continuous ∗-C-controlled frames

In this section, we introduce continuous controlled frames in Hilbert
C∗-modules with C∗-valued bounds, and then we give some results for
these frames. We assume that A is an unital C∗-algebra and, U is a
Hilbert A-module.

Let Y be a Banach space, (X , µ) a measure space, and f : X → Y a
measurable function. The integral of the Banach-valued function f has
been defined by Bochner and others. Most properties of this integral
are similar to those of the integral of real-valued functions (see [7, 25]).
Since every C∗-algebra and Hilbert C∗-module is a Banach space, hence
we can use this integral in these spaces.

Definition 2.1. A mapping F : X → U is called a continuous ∗-frame
for U if

(i) F is weakly-measurable, i.e, for any f ∈ U , the mapping X 7−→
⟨f, F (X )⟩ is measurable on X .

(ii) There exist strictly nonzero elements A,B in A such that

A⟨f, f⟩A∗ ≤
∫
X
⟨f, F (x)⟩⟨F (x), f⟩dµ(x) ≤ B⟨f, f⟩B∗, (f ∈ U). (2.1)

Definition 2.2. Let C ∈ GL(U). A mapping F : X → U is called a
continuous ∗-C-controlled frame for U if

(C1) F is weakly-measurable, i.e, for any f ∈ U , the mapping X 7−→
⟨f, F (X )⟩ is measurable on X .
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(C2) There exist strictly nonzero elements A,B in A such that

A⟨f, f⟩A∗ ≤
∫
X
⟨f, F (x)⟩⟨CF (x), f⟩dµ(x) ≤ B⟨f, f⟩B∗, (f ∈ U).

(2.2)
If A = B, the continuous ∗-C-controlled frame is called tight, and if
A = B = 1 it is called a continuous Parseval ∗-C-controlled frame.
The map F is called a continuous ∗-C-controlled Bessel map with bound
B if it has the upper bound condition in (2.2).

Remark 2.3. If C = I, the identity operator on U , then the continuous
∗-C-controlled frame is continuous ∗-frame.
Also, the set of all continuous C-controlled frames can be considered as
a subset of the family of Continuous ∗-C-controlled frames. For this, let
F be a continuous C-controlled frame for the Hilbert C∗-module U with
positive real bounds A,B. Then for f ∈ U , we have

(
√
A)1A⟨f, f⟩(

√
A)1A ≤

∫
X
⟨f, F (x)⟩⟨CF (x), f⟩ ≤ (

√
B)1A⟨f, f⟩(

√
B)1A.

(2.3)
Hence, F is a continuous ∗-C-controlled frame with C∗-algebra valued
bounds (

√
A)1A and (

√
B)1A.

Example 2.4. Let U = A = l2(C) with theA-inner product ⟨{an}n∈N, {bn}n∈N⟩ =
{anbn}n∈N. Consider the linear operator C : U → U defined as C{an}n∈N =
{αan}n∈N, where α ∈ R+. Let (X , µ) be a measure space in which
X = [0, 1] and µ is the Lebesgue measure. Suppose

F : X → U

x 7−→ {
√
3(12 + 1

n)x}n∈N.
If f = {an}n∈N ∈ U , then we see that∫
X
⟨f, F (x)⟩⟨CF (x), f⟩dµ(x) =

∫
[0,1]

{
√
3(
1

2
+

1

n
)an}n∈N{

√
3α(

1

2
+

1

n
)an}n∈Nx2dµ(x)

= α{(1
2
+

1

n
)2}n∈N{|an|2}n∈N

=
√
α{1

2
+

1

n
}n∈N⟨{an}n∈N, {an}n∈N⟩

√
α{1

2
+

1

n
}n∈N.

Therefore F is a continuous tight ∗-C-frame with bound
√
α{1

2 +
1
n}n∈N.

Example 2.5. Let U =
{(

a 0 0
0 0 b

)
: a, b ∈ C

}
, and A =

{(
x 0
0 y

)
:

x, y ∈ C
}
which is a C∗-algebra. We define the inner product

⟨., .⟩ : U × U → A
(M,N) 7−→ M(N)t.
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This inner product makes U a C∗-module on A. We consider a measure
space (X = [0, 1], µ) whose µ is the Lebesgue measure. Suppose A =(
α 0
0 β

)
, in which α, β > 1. We define

C : U → U as U(M) = AM for any M ∈ U . Also F : X → U is

defined by F (x) =

(√
3x 0 0

0 0
√
3x

)
, for any x ∈ X . It is clear that

C is a positive bounded linear operator, in fact, ∥C∥ ≤ max(α, β), and
C−1(M) = A−1M , hence C ∈ GL(U). We have∫
[0,1]

⟨f, F (x)⟩⟨CF (x), f⟩dµ(x) =
∫
[0,1]

(
3x2α|a|2 0

0 3x2β|b|2
)
dµ(x)

=

∫
[0,1]

3x2
(
α 0
0 β

)(
|a|2 0
0 |b|2

)
dµ(x)

=

(
α 0
0 β

)(
|a|2 0
0 |b|2

)
=

(√
α 0
0

√
β

)(
|a|2 0
0 |b|2

)(√
α 0
0

√
β

)
.

Therefore F is a continuous tight ∗-C-controlled frame with bound(√
α 0
0

√
β

)
.

Remark 2.6. Let C ∈ GL(U). It is straightforward to see that a mapping
F : X → U is a continuous ∗-C-controlled Bessel map in Hilbert C∗-
module E if and only if the operator SCf =

∫
x∈X ⟨f, F (x)⟩CF (x)dµ(x)

is well defined and there exists a strictly nonzero element B in A such
that ∫

x∈X
⟨f, F (x)⟩⟨CF (x), f⟩dµ(x) ≤ B⟨f, f⟩B∗, (f ∈ U).

By using Remark 2.6 we have the following definition.

Definition 2.7. Let C ∈ GL(E), and let the mapping F : X → U be
a continuous ∗-C-controlled Bessel map in Hilbert C∗-module U . The
operator SCf =

∫
x∈X ⟨f, F (x)⟩CF (x)dµ(x) is called a continuous ∗-C-

controlled frame operator.

In proof of Theorem 2.9, we need the following lemma.

Lemma 2.8. Let F : X → U be a continuous ∗-frame with ∗-bounds
A,B and continuous∗-frame operator S, i.e. Sf =

∫
x∈X ⟨f, F (x)⟩F (x)dµ(x).

Then S is a positive, bounded, selfadjoint and invertible operator, and

∥A−1∥−2 ≤ ∥S∥ ≤ ∥B∥2.
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Proof. It is obvious that S is positive. For f, g ∈ U , we have

⟨Sf, g⟩ =
〈∫

x∈X
⟨f, F (x)⟩F (x)dµ(x), g

〉
=

∫
x∈X

⟨f, F (x)⟩⟨F (x), g⟩dµ(x)

=

∫
x∈X

⟨f, F (x)⟩⟨g, F (x)⟩∗dµ(x)

=
〈
f,

∫
x∈X

⟨g, F (x)⟩F (x)dµ(x)
〉

= ⟨f, Sg⟩.

Therefore S is selfadjoint. Similar to the proof of [22, Theorem 2.6], we
conclude that SC is invertible. Now, by (2.1) we get

A⟨f, f⟩A∗ ≤ ⟨Sf, f⟩ ≤ B⟨f, f⟩B∗.

Hence ⟨f, f⟩ ≤ A−1⟨Sf, f⟩ ≤ (A∗)−1 and ⟨Sf, f⟩ ≤ B⟨f, f⟩B∗, so we
deduce that

∥A−1∥−2∥⟨f, f⟩∥ ≤ ∥⟨Sf, f⟩∥ ≤ ∥B∥2∥⟨f, f⟩∥,

for each f ∈ U . Therefore

∥A−1∥−2 ≤ ∥S∥ ≤ ∥B∥2.

This completes the proof. □

Now, we get the following theorem.

Theorem 2.9. Let C ∈ GL+(U), and let the mapping F : X → U be
a continuous ∗-C-controlled frame in Hilbert C∗-module U . Then con-
tinuous ∗-C-controlled frame operator SC is invertible, and ∥A−1∥−2 ≤
∥SC∥ ≤ ∥B∥2.

Proof. From the definition of S and SC , we have SC = CS. Using [15]
and Lemma 2.8, SC is A-linear and bounded. Similar to the proof of
[22, Theorem 2.6], we conclude that SC is invertible and

∥A−1∥−2 ≤ ∥SC∥ ≤ ∥B∥2.

□

We get the following corollary.

Corollary 2.10. Let C ∈ GL(U) be adjointable, and let SC be the frame
operator of continuous ∗-C-controlled Bessel map with bound B. Then

∥
∫
X
⟨f, F (x)⟩⟨CF (x), f⟩∥ ≤ ∥B∥2∥f∥2, (f ∈ U). (2.4)
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Proof. By Lemma 2.6, for any f ∈ U we have

∥
∫
X
⟨f, F (x)⟩⟨CF (x), f⟩∥ = ∥⟨SCf, f⟩∥ ≤ ∥SC∥∥f∥2 ≤ ∥B∥2∥f∥2.

□

Remark 2.11. Let C ∈ GL(E). If F : X → U is a continuous ∗-C-
controlled frame in Hilbert C∗-module U , then there exist strictly posi-
tive numbers a, b such that

a∥f∥2 ≤ ∥
∫
X
⟨f, F (x)⟩⟨CF (x), f⟩∥ ≤ b∥f∥2, (f ∈ U). (2.5)

3. Continuous ∗-(C,C ′)-controlled frames

In this section, we introduce a family of continuous ∗-controlled frames
which contains the set of all continuous ∗-C-controlled frames. In all of
this section, we assume that C,C ′ ∈ GL(E).

Definition 3.1. The mapping F : X → U is called a continuous ∗-
(C,C ′)-controlled frame in Hilbert C∗-module U , if
(CC1) C ′F is weakly-measurable, i.e, for any f ∈ U , the mapping X 7−→
⟨f, C ′F (X )⟩ is measurable on X .

(CC2) There exists strictly nonzero elements A,B in A such that

A⟨f, f⟩A∗ ≤
∫
X
⟨f, C ′F (x)⟩⟨CF (x), f⟩dµ(x) ≤ B⟨f, f⟩B∗, (f ∈ U).

(3.1)

If C ′ = I, then the continuous ∗-(C,C ′)-controlled frame F is a con-
tinuous ∗-C-controlled frame, and so the family of continuous ∗-(C,C ′)-
controlled frames contains all continuous ∗-C-controlled frames.

Remark 3.2. The continuous ∗-(C,C ′)-controlled frame operator is de-
fined by

SCC′f =

∫
X
⟨f, C ′F (x)⟩CF (x)dµ(x).

Now, if C,C ′ ∈ GL+(U), then as the proof of Lemma 2.8, we conclude
that SCC′ is an A-linear and bounded operator.

Proposition 3.3. Let C ∈ End∗A(U) be a unitary operator. Then F :
X → U is a continuous ∗-frame if and only if it is a continuous ∗-(C,C)-
controlled frame.
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Proof. Let F : X → U be a continuous ∗-(C,C)-controlled frame with
∗-frame bounds A,B. Then, for all f ∈ U ,

A⟨f, f⟩A∗ = A⟨C∗Cf, f⟩A∗

= A⟨Cf,Cf⟩A∗

≤
∫
X
⟨Cf,CF (x)⟩⟨CF (x), Cf⟩dµ(x)

=

∫
X
⟨f, F (x)⟩⟨F (x), f⟩dµ(x),

hence

A⟨f, f⟩A∗ ≤
∫
X
⟨f, F (x)⟩⟨F (x), f⟩dµ(x).

On the other hand∫
X
⟨f, F (x)⟩⟨F (x), f⟩dµ(x) =

∫
X
⟨C∗Cf, F (x)⟩⟨F (x), C∗Cf⟩dµ(x)

=

∫
X
⟨Cf,CF (x)⟩⟨CF (x), Cf⟩dµ(x)

≤ B⟨Cf,Cf⟩B∗

= B⟨f, f⟩B∗.

Therefore F is continuous ∗-frame with ∗-bounds A and B.
Conversely, assume that F is a continuous ∗-frame with ∗-bounds A

and B. Then for all f ∈ U , we get∫
X
⟨f, CF (x)⟩⟨CF (x), f⟩dµ(x) =

∫
X
⟨C∗f, F (x)⟩⟨F (x), C∗f⟩dµ(x)

≤ B⟨C∗f, C∗f⟩B∗

= B⟨f, f⟩B∗,

and

A⟨f, f⟩A∗ = A⟨CC∗f, f⟩A∗

= A⟨C∗f, C∗f⟩A∗

≤
∫
X
⟨C∗f, F (x)⟩⟨F (x), C∗f⟩dµ(x)

=

∫
X
⟨f, CF (x)⟩⟨CF (x), ⟩dµ(x).

Therefore F is a continuous ∗-(C,C)-controlled frame with ∗-frame bounds
A and B. □
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We know that |a|2 = a∗a, for any a in C∗-algebra A. Hence, in
the following, we assume that A is a commutative C∗-algebra. The
next result is a motivation to define a continuous controlled multiplier
operator.

Theorem 3.4. Let F and G be continuous ∗-(C,C)-controlled and ∗-
(C ′, C ′)-controlled Bessel maps with ∗-frame bounds B and B′, respec-
tively. Let m ∈ L∞(X , µ). The operator

Mm,CF,C′G : U → U
f 7−→

∫
X m(x)⟨f, CF (x)⟩C ′G(x)dµ(x)

is a well-defined bounded operator.

Proof. For any f, g ∈ H we have

∥⟨Mm,CF,C′Gf, g⟩∥ = ∥
∫
X
m(x)⟨f, CF (x)⟩⟨C ′G(x), g⟩dµ(x)∥

≤ ∥
(∫

X
|m(x)|2|⟨f, CF (x)⟩|2dµ(x)

) 1
2
(∫

X
|⟨C ′G(x), g⟩|2dµ(x)

) 1
2

∥

≤ ∥m∥∞∥
(∫

X
⟨CF (x), f⟩⟨f, CF (x)⟩dµ(x)

) 1
2

∥

∥
(∫

X
⟨g, C ′G(x)⟩⟨C ′G(x), g⟩dµ(x)

) 1
2

∥

=≤ ∥m∥∞∥
(∫

X
⟨f, CF (x)⟩⟨CF (x), f⟩dµ(x)

) 1
2

∥

∥
(∫

X
⟨g, C ′G(x)⟩⟨C ′G(x), g⟩dµ(x)

) 1
2

∥

≤ ∥m∥∞∥∥B∥∥B′∥∥f∥∥g∥.

This shows that

∥Mm,CF,C′G∥ ≤ ∥B∥∥B′∥.
Hence Mm,CF,C′G is well-defined and bounded. □

Now, we give the concept of multipliers for continuous ∗-(C,C ′)-
controlled Bessel maps.

Definition 3.5. Let F and G be continuous ∗-(C,C)-controlled and ∗-
(C ′, C ′)-controlled Bessel maps for U , respectively. Let m ∈ L∞(X , µ).
The operator

Mm,CF,C′G : U → U
f 7−→

∫
X m(x)⟨f, CF (x)⟩C ′G(x)dµ(x)
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is called the continuous ∗-(C,C ′)-controlled Bessel multiplier of F,G and
m.

Let Mm,F,G be the continuous ∗-controlled Bessel multiplier of F,G,
where F and G are continuous ∗-controlled Bessel frames. We give the
following result.

Corollary 3.6. Let C and C ′ be unitary operators in End∗A(U). Sup-
pose F and G be continuous ∗-(C,C)-controlled and ∗-(C ′, C ′)-controlled
Bessel maps with ∗-frame bounds B and B′, respectively. Then

Mm,CF,C′G = C ′Mm,F,GC
∗.

Proof. Using Proposition 3.3, F andG are continuous ∗-controlled Bessel
maps. So we have

⟨Mm,CF,C′Gf, g⟩ =
∫
X
m(x)⟨f, CF (x)⟩⟨C ′G(x), g⟩dµ(x)

=

∫
X
m(x)⟨C∗f, F (x)⟩⟨G(x), (C ′)∗g⟩dµ(x)

= ⟨Mm,F,GC
∗f, (C ′)∗g⟩

= ⟨C ′Mm,F,GC
∗f, g⟩,

for all f, g ∈ U . Hence

Mm,CF,C′G = C ′Mm,F,GC
∗.

□

In the next result, we show that under some conditions a continu-
ous ∗-(C,C)-controlled Bessel multiplier could be a positive (invertible)
operator.

Proposition 3.7. Let C ∈ GL+(U), and let m(x) ≥ δ > 0 a.e.,
then for any continuous ∗-(C,C)-controlled Bessel map F , the multi-
plier Mm,CF,CF is a positive invertible operator.

Proof. For any f ∈ U , we have

⟨Mm,CF,CF f, f⟩ =
∫
X
m(x)⟨f, CF (x)⟩⟨CF (x), f⟩dµ(x)

=

∫
X
m(x)|⟨f, CF (x)⟩|2dµ(x) ≥ 0.
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If m(x) ≥ δ > 0 a.e. and ∥m∥∞ < ∞, then

0 ≤ δ

∫
X
⟨f, CF (x)⟩⟨CF (x), f⟩dµ(x)

≤
∫
X
m(x)⟨f, CF (x)⟩⟨CF (x), f⟩dµ(x)

=

∫
X
⟨f, Cm(x)

1
2F (x)⟩⟨Cm(x)

1
2F (x), f⟩dµ(x)

≤ ∥m∥∞
∫
X
⟨f, CF (x)⟩⟨CF (x), f⟩dµ(x)

≤ ∥m∥∞B⟨f, f⟩B∗.

Hence G = m
1
2F is a continuous ∗-(C,C)-controlled Bessel map and

SG = Mm,CF,CF . Therefore the multiplier Mm,CF,CF is a positive in-
vertible operator. □

Proposition 3.8. Let F and G be continuous ∗-(C,C)-controlled and ∗-
(C ′, C ′)-controlled Bessel maps for U , respectively. Let m ∈ L∞(X , µ).
Then

M∗
m,CF,C′G = Mm,C′G,CF .

Proof. For all f, g ∈ U we have

⟨f,M∗
m,CF,C′Gg⟩ = ⟨Mm,CF,C′Gf, g⟩

=

∫
X
m(x)⟨f, CF (x)⟩⟨C ′G(x), g⟩dµ(x)

=

∫
X
⟨f, CF (x)⟩⟨C ′G(x), g⟩m(x)dµ(x)

=

∫
X

〈
f,m(x)⟨g, C ′G(x)

〉
CF (x)⟩dµ(x)

=
〈
f,

∫
X
m(x)⟨g, C ′G(x)⟩CF (x)dµ(x)

〉
= ⟨f,Mm,C′G,CF g⟩.

□

Remark 3.9. Let (X , µ) be a measure space and let F be a continuous
∗-(C,C)-Bessel mapping from X to U . Then, the operator

TF : L2(X , µ) → U

weakly defined by

⟨TFm, f⟩ =
∫
X
m(x)⟨F (x), f⟩dµ(x), (f ∈ U)
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is well defined, linear and bounded operator. It’s adjoint is given by

T ∗
F : U → L2(X , µ), T ∗

F f(x) = ⟨f, F (x)⟩ (x ∈ X ).

The operator TF is called the synthesis operator and T ∗
F is called the

analysis operator of F . It is easy to see that SCC′ = TC′FT
∗
CF .

Let F and G be continuous ∗-(C,C) and ∗-(C ′, C ′)-controlled Bessel
maps for U , respectively. Then one easily shows that

Mm,CF,C′G = TC′GDmT ∗
CF ,

where Dm : L2(X , µ) → L2(X , µ) defined by (Dmϕ)(x) = m(x)ϕ(x).
It has been proved that if m ∈ L∞(X , µ), then Dm is bounded and
∥Dm∥ = ∥m∥∞.
Balazs, Bayer, and Rahimi, using Lebesgue’s Dominated Convergence
Theorem, have shown in [4, Theorem 3.7] that under some conditions
Mm,F,G = TFDmT ∗

F is compact for continuous Bessel mappings F and
G for U with respect to (X , µ). On the framework of continuous ∗-
(C,C ′)-controlled Bessel maps in Hilbert C∗-modules we give the next
problem.

Conclusion

In the present paper, the concept of continuous ∗-frames and continu-
ous ∗-C-controlled frames have been given, then some well-known results
of continuous frames are extended to ∗-continuous frames. At the end
of this paper, continuous ∗-(C,C ′)-controlled frames have been investi-
gated. Especially, the concept of multipliers for continuous ∗-(C,C ′)-
controlled Bessel maps is defined, and some results of multipliers from
continuous Bessel maps to continuous ∗-(C,C ′)-controlled Bessel maps
have extended.

Open problem. Under what conditions Mm,CF,C′G is compact for con-
tinuous ∗-controlled Bessel mappings F and G for U with respect to
(X , µ)?

References

[1] S.T. Ali, J.-P. Antoine and J.-P. Gazeau, Continuous frames in Hilbert
space, Annals of Physics, 222(1993), 1–37.

[2] L. Arambaic, On frames for countably generated Hilbert C∗-modules, Proc.
Amer. Math. Soc., 135(2007), 479-478.

[3] P. Balazs, J.-P. Antoine and A. Grybos, Wighted and controlled frames,
Int. J. Wavelets, Multiresolut. Inf. Process., 8(1)(2010) 109-–132.

[4] P. Balazs, D. Bayer and A. Rahimi, Multipliers for continuous frames in
Hilbert spaces, J. phys. A 45(2012), Article ID 244023, 20 pages.

[5] P. G. Casazza and G. Kutyniok, Frames of subspaces, in Wavelets, Frames
and operator theory, Contemp. Math., 345(2004), 87-113.



460 H. Ghasemi, T. Lal Shateri

[6] O. Christensen, An introduction to frames and Riesz bases, Birkhauser,
Boston, 2016.

[7] N. Dunford and J.T. Schwartz, Linear Operators, I. General Theory, vol.
7 of Pure and Applied Mathematics, Interscience, New York, NY, USA,
(1958).

[8] I. Daubechies, A. Grassman and Y. Meyer, Painless nonothogonal expani-
sions, J. Math. Phys., 27(1986), 1271-1283.

[9] R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series,
Trans. Amer. Math. Soc., 72(1952), 341-366.

[10] M. Frank and D. R. Larson, Frames in Hilbert C∗-modules and C∗-
algebras, J. Operator Theory, 48(2002), 273-314.

[11] W. Jing, Frames in Hilbert C∗-modules, Ph.D. Thesis, University of Cen-
tral Florida Orlando, Florida, 2006.

[12] S. Kabbaj, H. Labrigui and A. Touri, Controlled Continuous g-Frames
in Hilbert C∗-Modules, Moroccan J. Pure and Appl. Anal., 6(2)(2020),
184—197.

[13] G. Kaiser, A Friendly Guide to Wavelets, Birkha”user, Boston, 1994.
[14] A. Khosravi and B. Khosravi, g-frames and modular Riesz bases in Hilbert

C∗-modules, Int. J. Wavelets, Multiresolut. Inf. Process., 10(2)(2012), 1-
12.

[15] E.C. Lance, Hilbert C∗-Modules: A Toolkit for Operator Algebraist, 144
pages, vol. 210 of London Mathematical Society Lecture Note Series, Cam-
bridge University Press, Cambridge, UK, (1995).

[16] Z.A. Moosavi and A. Nazari, Controlled ∗-G-Frames and their ∗-G-
Multipliers in Hilbert C∗-Modules, Caspian J. Math. Sci., 8(2)(2019),
120-136.

[17] A. Nejati and A. Rahimi, Generalized frames in Hilbert spaces, Bull. Ira-
nian Math. Soc., 35(1)(2009), 97-109.

[18] I. Raeburn and D. P. Williams, Morita Equivalence and Continuous-Trace
C∗-Algebras, Vol 60, Mathematical Surveys and Monographs, Amer. Math.
Soc., Providence, RI, USA, 1998.

[19] M. Rashidi-Kouchi and A. Rahimi, On controlled frames in Hilbert
C∗-modules, Int. J. Wavelets Multiresolut. Inf. Process., 15(4)(2017),
1750038 (15 pages), DOI: 10.1142/S0219691317500382.

[20] M. Rossafi, and S. Kabbaj, ∗-g-frames in tensor products of Hilbert C∗-
modules, Ann. Univ. Paedagog. Crac. Stud. Math., 17(2018), 15-24.

[21] M. Rossafi, and S. Kabbaj, ∗-K-g-frames in Hilbert C∗-modules, J. Linear.
Toplogical. Algebra, 07(01)(2018), 63-71.

[22] T.L. Shateri, ∗-controlled frames in Hilbert C∗-modules, Inter. J.
Wavelets and Multiresolut. Inf. Process, (2020) 2050080 (7 pages) DOI:
10.1142/S0219691320500800.

[23] W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl., 322(1)(2006),
437-452.

[24] X. Xiao, Y. Zhu, and L. Gavruta, Some properties of K-frames in Hilbert
spaces, Results Math., 63(3-4)(2013), 1243-1255.

[25] K. Yosida, Functional Analysis, vol. 123, Springer-Verlag Berlin Heidel-
berg, Springer, Berlin, Germany, 6th edition, (1980).


	1.  Introduction
	2. Continuous *-C-controlled frames
	3. Continuous *-(C,C')-controlled frames
	Conclusion
	Open problem

	References

