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1. INTRODUCTION

Let B(H) denote the C*-algebra of all bounded linear operators on
a complex Hilbert space (H,(.,.)) with the identity operator 1y in
B (#). An operator T € B(#) is said to be positive if (Tx,z) > 0
for each x € H. We write T' > 0 if T is positive and invertible. For
T € B(H), T* denotes the adjoint of T. We write |T| = (T*T)'?
and |T%| = (TT*)1/2. Every T € B(H) can be decomposition as
T =R(T)+iS(T), where R(T) = 3 (T +T*) and S(T) = 5 (T — T™).
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This decomposition is called the Cartesian decomposition of T. The nu-
merical radius of T' € B (H), denoted by w (T"), is defined as w (T") =
sup {|(Tu,u)| : w € H and ||ul]| =1} . Recall that the operator norm of
T € B(H) is defined by ||T|| = sup{||[Tu|| : v € H and |ju]] = 1}. Tt is
easy to verify that w(.) defines a norm on B (#). Furthermore, it is
equivalent to the operator norm on B (#), satisfies

STl < w(m) < 7). (1)

A recently released book [7] discusses several improvements of the in-
equalities in ([L.1f) and related conclusions. The reader can also view the
papers [9, 8, 11, 29] and references.

Next we turn our attention to a functional Hilbert space (FHS). A
functional Hilbert space H = H (€2) is a Hilbert space of all complex-
valued functions on a non-empty set {2, which has the property that point
evaluations are continuous, i.e., for every 7 € Q the map E, : H — C
defined by E; (h) = h(7), is continuous. Riesz representation theorem
ensures that for each 7 € Q there exists a unique k; € H such that
h(r) = (h,k;) for all h € H. The collection of k, for all 7 € Q is
called the reproducing kernel of H and the collection of ET = Hk]iiTHH for

all 7 € 1 is called the normalized reproducing kernel of H. For any
T € B(H), the Berezin symbol of T is a function 7" on €2 defined as

T(71):= <TET,/k\T> , for each 7 € ), which was introduced by Berezin
[2]. The Berezin set (or range) of T is denoted by Ber(T") and is defined
as Ber(T) := {T(T) ITE Q} The Berezin number (or radius) of T,

denoted by ber(T") and the Berezin norm of T, denoted by |||, , are
respectively defined as

ber(T') := sup T(T)‘ and [|T||ge, 1= sup HTET
TEQ TEQ

(see, [25, 26]). For T,S € B(H) it is clear from the definition of the

Berezin number and the Berezin norm that the following properties hold:
(B1) ber(aT') = |a|ber(T) for all a € C,

B2) ber(T + S) < ber(T) + ber(S),

) ber(T) < HTHber7

) HaT”ber = ’Ct’ HTHber for all o € C’

) HT + SHber < HTHber + HSHber ’

(
(B3
(B4
(B5
(B6)I|T [y = 7" [per aml bex(T) = ber(T).

In [10], it is proved that ||T'||g., = ber(T), if T' € B(H) is positive. It
is clear from the definition that Ber(7) C W (T') and so

ber(T) < w (T) < |T]. (1.2)
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The Berezin number inequalities have been studied by many mathemati-
cians over the years, for the latest and recent results we refer the readers
to see [3, b, 6, 12, 15, [16, 18, 19, 20, 21, B0, B1, B2, B4].

In 2021, the following inequalities has been shown Huban et al. ([22])

1
TP+ TP <ver(my < TP+ P| @)

‘
4 ber

T * 1 T T
ber” (S™T) < 5 17"+ |S] [[per - (1.4)
Also, the same authors (see, [23, 24]) have proved
1 N 1 1/2
ber (1) < 171+ 17*ller < 3 (1T 0o + I7152)  (15)

and .
ber?” (T) < = H\T!Qr + \T*]QT
2 ber

, where r > 1. (1.6)

In this article, we obtain new inequalities for Berezin radius. We have
some improvements and interpolations of Berezin radius inequalities via
operator convex function. These results offer several general forms and
refinements of some known inequalities in the literature. The bounds
obtained here improve on the earlier ones studied in [17, 22].

2. AUXILIARY THEOREMS

To reach our goal in this present article we begin with the follow-
ing sequence of lemmas. The first lemma is aritmetic-geometric mean
inequality for usual norm.

Lemma 2.1 ([§]). Let T, S € B(#H) be positive, then
1
ITS| < S IT + 5] (2.1)

Lemma 2.2 ([27]). (i) Let T € B(H). If f,g : [0,00] — [0,00] are
continuous functions satisfying f (t) g (t) =t for all t > 0, then

(T, )| <IF(TD 2l g IT*Dyll, Ve, y € H. (2.2)
(ii) Let x € H with ||z|| = 1. Then
(T, ) < (|T|z,2) (|T"| 2, ). (2.3)

Lemma 2.3 ([28]). IfT,S € B(H) are positive operators, then we have
1T+ S < T+ IS af (1751 = [1THST-

Now, we remember the definition of operator convex function. It says
that: A real-valued continuous function f on an interval J is denoted
operator convex if

F(A=0)T+1t8) < (1 —t) f(T)+tf(5)
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in the operator order for all ¢ € [0, 1] and for every self-adjoint operator
T and S on a Hilbert space H whose spectra are contained in J. If either
1<r<2or—1<r <0, the function f (t) =t" is operator convex.

Lemma 2.4 ([14)). Let T € B(H) be a self-adjoint operator and let
x € H be an unit vector. If f is a conver function on an interval
containing the spectrum of T, then

f((Tz,z)) < (f(T)z, ). (2.4)
If f is a concave, then inequality @) holds in the reverse direction.

Lemma 2.5 ([13]). Let f : J — R be an operator convex function on

an interval J. Let T and S be two self-adjoint operators with spectra in
J. Then

f<m> /f 1—t)T+tS)dt<1(f(T)+f(S)). (2.5)

If f is non-negative, then the operator inequality (@ ) can be reduced to
the following norm inequality:

1
lr (55| <| [ ra-oresya < g+ s,
(2.6)
Lemma 2.6. If f : [0,d] — [0,00] , (d > 0) is an increasing convex
function with f (0) =0 and a € [0,1]. Then we have
f(ax) = af (). (2.7)

Lemma 2.7 ([l]). Let f be a nonnegative increasing convex function on
[0,00) and let T, S € B(H) be a positive operators. Then

1 (A =v)T+oS)| < |1 —v) f(T)+vf(9) (2.8)
for every 0 < v < 1.

Lemma 2.8 ([22]). Let H =H () be a FHS and let T, S € B(H) be a
self adjoint. Then

|7+ S]| < \/ber? (T +S) + |7 ]| +ber (ST).  (2.9)
Lemma 2.9 ([4]). Let T € B(H) be a positive operator. Then for all
AeQ

(T)" < ;Tva O, a>1, (2.10)

/2
ahere = 1+ 20 - 1) (1= £ )
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Lemma 2.10 ([33]). IfT € B (H) be a hyponormal, i.e. T*T—TT* > 0,
v=min{\, 1 — A}, where 0 < X\ <1, then

1 H‘T’ + |T*‘Hber

ber (T) < R 5 , (2.11)
here ¢ > 1, ¢ = infeeq K ( 16 2) }
where ¢ > 1, ¢ =in geQ{ (T*I(ﬁ)’

3. MAIN RESULTS

In this section, we mainly establish several refinement of Berezin ra-
dius inequalities ([L.3). Furthermore, the main goal of this section is to
present new interpolation inequalities of some known inequalities for the
numerical radius by using the properties of operator convex functions.

3.1. Some refinement of Berezin radius inequalities. We now
prove the following norm inequalities.

Theorem 3.1. If H=H(Q) is a FHS and T,S € B(H), then the

following inequalities hold:

1 * k *
1T + Sllper < T lIper + 1S l5er + 5 IT°T + 575l + ber (175)

and

1 X %
1T + Slper < 1T llier + 1S lper + 5 ITT* + S8 e, + ber (T'S7).

Proof. Let 7,v be an arbitrary. Then we have
2

o~

(T +8)Fr )

(e )+ (S )|+ 2|1 B ()

= (7R R )[4 [( R R+ 2[(TR R (Re, SR

< (2R B | (5B B )|+ 8| |5 | + (7R, 5B

< <TAT,2U> g <SAT,EU> 2+% (HTET + HSET )+ ‘<TET,SEU>

< |(Thy R ) g (ks R 2+%<(T*T+S*S)ET,ET>+‘<T*SET,ET> ,

where the fourth inequality follows from Bozano’s inequality ([L1]), i.e.,
if x,y,e € H and |le|| = 1, then we have

[(z, e) e, y)| < %(Hﬂcll lyll + {2, 9)]) - (3.1)
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Now, taking the supremum over all 7,v € Q) with 7 = v, we get

sup ‘<(T+ S) ET,ET> 2 < sup ‘<T7f\777€\7> 2 + sup ’<Si€\7,7§\7> 2

TEQ TEQN TEQN
+ 328; <(T*T + 5*9) ET,%T> + ]<T*SET,%T>

which to equivalent

1 * * *
1T + Sllper < I Tlper + 1S per + 5 17T + Sl + bex (T*5) . (3.2)

By replacing T' by T* and S by S* in (@), we get

1 * * *
1T + Sliper < 1T llier + 1S lper + 5 ITT* + S8 ey + ber (T'S7).
This completes the proof. O

In 22, Theorem 3.1], Huban et al. obtained another refinement of the
second inequality in ([l.2), the authors proved that

1 * * ]‘ * *
Z HT T + T ”ber S ber2 (T) S 5 HT T+ T Hber . (33)

Based on the above norm inequalities we obtain the following refine-
ment of Huban et al’s inequality (B.3).

Theorem 3.2. If H =H () is a FHS and T € B (H), then we have

1
Z ||T*T + TT*Hber

< [(||T+T e + 1T = T 1) + 5 (1T + T2 = 1T = T2, ]

< ber® (T).
Proof. Let T = S + iR be the Cartesian decomposition of 7. Then S
and R are self-adjoint, and T*T 4+ TT* = 2 (82 + R2) . It is clear that

1 1
1 ”T*T + TT*Hber = 5 HS2 + R2Hber : (34)

N
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From the identity (@) and Theorem @, we get

1

Z ”T*T + TT*Hber

1
= 5 HSZ + R2Hber

1 1 1/2
SQMQ@,Hmma+ﬂwwﬁmhﬁ+mq§Rﬂ

IN

1 4 4 1 4 4 2 2 2
5 |:HSHber + HRHber + 5 (HSHber + HRHber) + HSHber HRHber :
The rest of the proof is easily illustrated with a basic calculation. O

The following theorem shows that inequality (@) is a refinement of
inequality given in Theorem B.2.

Theorem 3.3. If H =H () is a FHS and T € B (H), then we have
1 * *
Z ||T r+T1T1r Hber

1
1 * * 3 N . 2] 2
§8[0T+THiﬁwT—THiJ+4OF+TH&ﬁwT—THi&]

< ber?(T). (3.5)

Proof. Now let us prove the first inequality in (@) In fact, according
to the identity (@)), the AM-GM inequality for usual norm (see, [8]),
the inequality ber? (52 + iRQ) < HS4 + RA‘HbCr and the inequality (ﬁ),
we have that

1 * *
Z ||T Tr+7TT Hber

1
= 5 HS2 + RQHber

1

IN

ber? (52 4+ iR%) + |52 ue B2y + ber (SR2)]2

IN

1
HS4 + R4Hber + H52Hber HRQHber + HSzRQHber] ?

-

IN

[
1 2
hw;+mmﬁmmwm@+mﬁ+ﬁ%4

= NI~ N~ N

IN

1
1 1 2]z
2hw;+mmﬁ2@w;+mmgagw&ﬁw%Q}

The desired first inequality in (@) is obtained. We will now prove the
second inequality in (@) We have [|S||,,, < ber(T) and [|R|,,, <
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ber (T") . So

1 * *
Z ||T Tr+7Tr Hber

1

4 4 1 4 4 1 2 2 \?|?2
110 + 1Rl + 5 (15 er + 1R Ier) + 7 (IS2er + I RIE,)
1 1
B [4ber4 (T)]>
< ber? (T)

IN

IA

which gives the desired the second inequality in (@) This completes
the proof. O

Theorem 3.4. Let H =H () be a FHS and T, S € B(H). Then

1T+ Sllper < \/HT + iSper + T lper 1S 1lper + ber (S*T) (3.6

S ||T||ber + HSHber

Proof. Let 7,v be an arbitrary. Then we have

e (fori)

A

-

(<(T+S)ET,EU>

+
S
nn

)

3
§T>
~_—

= (2R B[+ [ R)| + 2 (TR R (SRR
= (% R+ (5B B[ 2| (78R (R, 58
< (2R B | (5B B )|+ 8| |5 | + (TR, 5B
_ <TET,AU> A +‘<S*TET,EU>

- <(T+iS)ET, ,,> ’

+ ‘<S*TET,EU> ,

where the second inequality follows from the inequality (|a|+ |b])? =
la* + |b|* 4+ 2]ab| and the fifth inequality follows from the inequality
la +b|*> = |a|® + |b]* . Hence we have

‘<T+S kT,k>2

§‘<(T+ZS)I<:T,/£ >2

+ ‘<S*T§7,EU> .

Now, taking the supremum over 7,v € € with 7 = v in the above
inequality, we have

2 . 2 *
HT + SHber S HT + Zs”ber + HT”Ber HS”Ber + ber (S T) .
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Thus

1T+ Slper < \/llT + 0 [per + I T llger 1S e + ber (S*T).
We will now prove the second inequality of (@) We have
(1T lper + 1S Ter)* < IT llger + 1S Iger + 21T e 115 lber
= [ Tllber + 1S 5er + 1T Ter 1S lber + 1T e 115 Tlber
2 [T lIger + 1S Hper + 1T ler 151 mer + 17 s 15T ber
> |IT + iSlper + 1T e 15l er + bex (57T,

and, so

\/HT + Z.SHier + HTHBer HSHBer + ber (S*T) < ”THber + ”SHber ’
which gives the desired the second inequality in (@) O

Theorem 3.5. Let H = H (2) be a FHS. If T € B(H) and f, g are non-
negative continuous function on [0,00) satisfying f(t)g(t) =t (t >0),
then we get

1
ber® (T) < 7 [F () + ¢* (1T D[ e, + *HfQ’“ (TN g* (1T + > (1D £* (ITD| e
1
< G 1 (7D + 9 (T g + gbex (7 (T g7 ()
(3.7)
forallT > 1.

Proof. Let 7 be an arbitrary. Then, from the inequalities (), Holder-
McCarthy inequality and AM-GM inequality, we get

~ > 2r

<|T|>E ) <92<|T*\>E rkr)

(T Erfr ) (6 (IT]) B, v )
e

<f2’“(\TI) )+ < PR R

Py
N
=)

J
-

IN

IN

IA

(£ (T0) + g (1T°) B B )
(7 (Tl) + g7 (1T°)* Fr iy

<(f47" A7) +g* () + £ (T) g (1T7]) + > (1T7]) £2 (7)) ET,ET> ,

IN

IN



Running Title 191
and so
7.1

1 r r * r r * r * r ENEN
< L (T + g (1) + £ (T 6 () + 0% (7°) £ () By )

Taking the supremum over 7 € ) in the above inequality, we have
ber 2r (T)

2r

[

< 1A aTh + g™ (T ) + L2 (7D 6 (T + g (T ) £ (TD ||

[ =

7 (I aTh + g™ (177 Hber+l|f2’" 47D g (T + g (T*1) £2 (1T [ )

Hf‘“" 1) + g (1T ey + HfQT AT > (T + g (IT*1) £2 (T D |yer -

From the (B6) and (B2) feature, we also observe that
r r * 1 T r * 1 T * T
ber (f#7(IT1) g™ (IT*])) = Sber (f*" (IT1) g™ (IT*])) + 5ber (¢ (1)) £ (IT1)

Sher (£27 () g (17°]) + 6% (17°)) £ (7))

| V

| \/

Hf” (I71) g*" (I

)+ g7 (IT*1) £2 (1T | o

as required to prove. The theorem is proven. O

Corollary 3.6. If we put r =1 in inequality (@), then we have
1 * 1 * *
ber? (T) < *||f4 (7D +g" (T Dl + 5 1£2ATD g* AT + 6* (177D £2 (TN e,

* 1 *
< 317 AT + 6" (7Dl + 5ber (72 (T4 (771)
which is the result of [17].

Taking f (t) = t'7¥ and g (t) = t¥ with 0 < v < 1 in inequality (@),
we also get the following inequality:

Corollary 3.7. If T € B (H), then we have
1 1
ber?" (T) < Z H‘T|4r(1—v) + ’T*’4T’U ) + Z H|T‘2T(l_v) |T*‘2TU + ‘T*’2rv |T‘27"(1—v)
Zber <|T|2T(17U) ‘T*|2rv> ]
ber

Corollary 3.8. If we put r =1 in Corollary @, then we have

ber
1
< H‘T|4T(1 v) ’T*|4rv

1
ber2 (T) § Z H‘T|4(1_U) + |T*|4v ) |T|2(1—U) ‘T*|21) + |T*|2v ‘T|2(1_U)

il
+ %ber <]T\2(1_”) ]T*\%) .

ber
1
< H‘T|4(1 v) ’T*|4v

ber
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In particular
1 * 1 * *
ber? () < 7 |[IT17 + TP+ 7 1T+ 1T T e
4 ber 4
L2 2 1 *
< = |||T)" + |T7| + —ber (|T||T7|) . (3.8)
4 ber 2

Remark 3.9. Giirdal and Bagaran (see, [17, Corollary 2]) have proven the
first inequality of Corollary B.7 and inequality (B.§), and in [22, Corolary
3.3], Huban et al. have proved the second inequality of inequality (B.8).
From Corollary B.8, we have

1 k % %
2 NTHT™ ]+ T per < ber (ITTT)- (3.9)

Theorem 3.10. Let H =H () be a FHS. If T,S € B(H) and r > 1,
then

1
ber27‘ (S*T) S |T‘4T + |S|4T 4= |T’2T |S‘2T + |S|2T |T|2T
ber 4

ber

(VAN
[ N N

1
T +1S"| -+ Sber (\T|2r ]S|2’"> (3.10)

< |T‘4T + ‘5‘47"

ber

Proof. Following the same procedure as in Theorem @ and Cauchy-
Schwarz inequality

T (R R (IS R,

we obtain the first inequality and second inequality in () Then,
from the inequality in [9, Corollary 3.16], we get

(<S*TET,ET>

g i 18], + gber (17 151)
<glim st g s,
<irﬂ“+wwbﬂ+;<ﬁwgww>

ber
S% T IS ber+% T IS .
o [

which gives the desired the last inequality in () This completes the
proof. O
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Corollary 3.11. Let T' € B(H) be an operator and r > 1. If we take
v = % in Remark |5.9, then we have

1 2 * |2 1 * *
ber (1) < L [|T17" + (7P| + 2 T 1T + 17117 e
1 1
< g |imPr | Sper (Tl T vy (D)
1 2 2
< = ||IT|*" +|T* " .
< [P

The above inequality is an improvement of inequality )

In the future theorem, we have the improvement of the second in-
equality in Corollary .

Theorem 3.12. Let H = H () be a FHS, T € B(H) and r > 1. Then
we have

1
ber2r (T) S E H|T’2T + ‘T*’2r

1
7b T7’ T*T
o T e D (T 7T,

where

ot
c—infdl+20—1)|1-— |2(T)l ,
(171(m)*
——
T2
yemfdir2m—1)|1- TEO
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Proof. Let k- be a normalized reproducing kernel. It follows from (@),

( and (@) that
(o)

)

~
™
)

T

< (171" B ) (17" For By )

< ;7 (7 T B ) @T’ |TTIET>

= 2i ([ [k ED))

si(HITT > 2W‘<|TTHT*| BE)
= (2P Ry o (I R ) o g (771127 B )
= (e ) >+i‘<w TG

Taking the supremum over 7 € ) in the above inequality, we have

o\ 2r 1 P
sup ‘<TI<:T, kT> < sup — <(|T12’“ + \T*F’“) ke, k:T>
TEQ

reQ 4w

+sup T (77117 R v )

which is equivalent to

1
ber2r (T) < R H|T|2T + |T*|2r

1
7b Tr T*T’
o T e Der (T T,

as required. This completes the proof. O

3.2. Operator convex function in Berezin radius inequalities.
The main idea of this section is to present new interpolation inequalities
of same known for the Berezin radius by using the properties operator
convex functions.

Theorem 3.13. Let H = H (2) be a FHS, T € B (H) be hyponormal and
f be nonnegative increasing operator convez function on [0,00). Then
for ¢ > 1 we have

f (ber (1)) < o= |1£ (1T1) + LT D llper - (3.11)

S 3¢
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Proof. Let R € B (H) and R be a self-adjoint operator, f be non-negative
increasing operator convex function on [0, 00). Then

FURllper) = f (ilelg <RET,%T>> = ilelgf (<R§T,@T>>
<sup (f (R Er ) (by (29)

= [1f (B) e -
It follows from Lemma that

ber (T') <

, (3.12)

ber
f (ber (T)) < f ( ber) .

Since % (|T'| + |T*|) is a self-adjoint operator, then we have

7 (|| (m+17 be)

7 (5 rt+17D)

of (30

]' *
2% (T +1T7))

and, so

]' *
i(!TI +177))

IN

ber

by (1))
(by (2.9))

ber

IN

FATH + £ (7))

=< 3 [0
< % I ATD + £ AT D) lper -
This completes the proof. O
Corollary 3.14. Let T' € B (H) be hyponormal. Then

* 1 *
f (ber (T f |T| +[T7) < o= I ATD + £ AT D) e -
ber 2C
(3.13)
Taking f(t) = t" with » > 1 in inequality (), we also get the
following inequality.

Corollary 3.15. Let T € B (H) be hyponormal. Then
() ber™ (T) < g 171"+ T*[ [[per-

(id) ber' (T) < | (% (71 + 177))

ber ’
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Remark 3.16. If we pay attention to the case for » = 1, we have

ber (T H (T + |T7))

1
< o= 17T+ 1T Dllper -
ber 2< be

Theorem 3.17. Let H="H () be a FHS, T € B(H) be hyponormal
and f be non-negative increasing operator convex function on [0,00).
Then

f (ber (T H/ < (1—1) <21<(\T| + |T*\)> +tber(T)I> dt

(T + £ (7)) e -

ber

< 2C
Proof. Since
(ITI + [T7]) ber (T) (1T +1T*N|  [ber (T) 1]y, -
ber 2C ber
From Lemma @, we have
1 1
— (|| +|T™|) ber (T) I = H(]TH— |T*) + ber (7). (3.14)
C ber 2C ber

By using inequality () and equality () we can find

Iher (T) < ‘ 21C(|T| +|T*]) + ber (T)

£ (ber (T)) < f <; H;C (IT| + |T7|) + ber (T) ber)

< |7 (5 (e 1+ i +ver (1))

ber
Then we get

(by (.4))

ber

1
<| [ r(a=0(Garemn) v mern)al ey @)
<3 (g orremn)| -+ 5swer) oy €9
Hf( (ri+17)| (o @ad)
< e 1 ATD + £ (T D)ler (o (B13).
This completes the proof. O

The following corollary is an immediate consequence of Theorem .
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Corollary 3.18. Let T € B (H) be hyponormal. Then

 (ber (7)) < \ / N (=) (5 (117D ) + tber () 1)

<|l# (g 0r+ 1)
ber
Corollary 3.19. Let T € B (H) be hyponormal. Then

ber

5 q11/2
(i) ber (T (¢ ( 1—1) (§(|T]+|T*|)> +tber(T)I) @ <
Tlc”(’T‘—i_‘T*’)Hber'
5 (11/2
(i4) ber (T) < ||fo (1 =) (& (7] + |T*])) + ther (T) 1) dt s
Hi (|T| + |T*|)Hber
Corollary 3.20. Let T € B(H) be hyponormal. Then
(i) ber” ( Hfo ( 1-1) (2—1((]T\+ yT*y)) —|—tber(T)I> at| <
2 1T +\T*! ) Iper-
(i4) ber” ( ‘fo (1—t <§(|T|+|T*|)) + ther (T) 1) at| <

(5 (71 + |T*\>)’“

Theorem 3.21. Let H = H (Q) be a FHS, T € B (H) and f be nonneg-
ative increasing operator convex function on [0,00). Then

£ (ber” ( H/ < (1—1) (; (|T\2°”“ + |T*|2(1‘“>T)> + ther” (T) I) dt
<|# (5 (e + prp=or))

forall a € (0,1), r > 1.

ber '

ber

(3.15)

ber

Proof. Indeed, by the proof of [23, Teorem 3.2] we get

1
ber” (T) <= H|T|2ar + |T*’2(17a)r

€(0,1),r>1.

ber

Therefore, by using the some arguments in Theorem - - follows.
The theorem is proved. (]

Next inequality follows from Lemma @ and the inequality ()
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Corollary 3.22. Let T € B (H) be hyponormal. Then
f(b r ! 1 2ar *12(1—a)r r
er’ (T)) < fla—te 5 |T|"" + |77 +tber" (T') ') dt
0
1 2ar *2(1—a)r
< =
<5 [ (mPer) 4 1 (o)

forall a € (0,1), r > 1.
Considering f (t) = t? in Theorem and Corollary , we have

the following corollaries.

ber

ber

Corollary 3.23. If T € B(H), then we have

9 |11/2

ber” (T) < /0 1 ((1-0 (; (\T!2M+\T*\2(1_°‘)T)> + ther” (T) 1) dt

ber

IN

% (|T‘2a7‘ + |T*|2(170¢)’r‘)

ber
and

5 (11/2

ber” (T) < /01 ((1 —1) (; (|T]2‘”” + |T*\2(1‘“>7”)> + ther” (T) I> dt

(; | (pter 4 rep=er) ber> N

for all a € (0,1), r > 1.
Considering f (t) = t in Theorem , then we get the following
inequality.

ber

IN

Corollary 3.24. Let T € B(H). Then we have

/ 1 ((1 1) (; (17 + |T*\2(1‘“)T)>  ther’ (T) I) “

< H; (|T|2m + |T*|2(17a)7")

ber” (T') <

ber

ber
for all a € (0,1), r > 1.

Theorem 3.25. Let H = H (2) be a FHS. For any T, S € B(H), o €
(0,1) and r > 1, we have the inequality

ber? (5°T) < [[aTI% + (1 - o) 5|77 (3.16)

ber
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Proof. Let 74:\7 be a normalized reproducing kernel. From Cauchy-Schwarz
inequality, Hélder-McCarthy inequalities, Weighted AM-GM inequality
and convexity of f (t) =", we have

(<S*TET,ET>

< <T*TET,ET> <S*5ET,ET>
%

Hence

(5Th.. R, ol

s _2r \ ~ o~
<{(a@T)% +(1-0)(5°9) T ) Fir, ).
Taking the supremum over 7 € ) in the above inequality, we have

ber? (§°T) < Ha 7% +(1—a)|S|To

ber ’
This completes the proof. O

Corollary 3.26. For a = %, we obtain the following inequality:

1
ber2r (S*T) S 5 H’T‘4r + ’5‘47’

ber
for allr > 1.

If we take S = I and S = T, respectively, we have the following
corollary.

Corollary 3.27. For any T € B(H) and any o € (0,1), r > 1, we get
the inequalities

ber?” (T) < Ham% t(1-a)l

ber
and

)

2r (2 2r _ | Ty
ber” (T?) < ||la|T|« + (1 — ) |T*]T=) .
er

respectively. Moreover, we get

4ar 2r * 7127"
Il < o T1% + (1= 0) |0

ber =

ber '
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Theorem 3.28. Let H =H (2) be a FHS. Let T,S € B(H) and f be

nonnegative increasing operator convex function on [0,00). Then

£ (ber? (S*T)) < /01 f ((1 — 1) (a T +(1—a) ysn%%) + ther? (T) I) dt

ber
< |7 (alm® + 1 - o) )|
for alla € (0,1), r > 1.
Proof. Using the inequality () and proceeding similarly as Theorem
3.17 we can reach the required inequalities. O
In particular, if f(t) = t?> and f (t) = t, respectively, then we obtain
the following interpolation inequalities of (@3)
Corollary 3.29. Let T,S € B(H). Then
1
1 2r _2r 2 2
ber®™ ($*T) < / ((1 —#) (a )% +(1-a) \syu-a)) + ther (T) I) dt
0 ber
2r 2r
< atri® + 1 - o) 575 |
and
1 T
ber? (S*T) < / ((1 —1) (a 7% +(1-a) \sy*uia)) + ther™ (T) 1) dt
0 ber
< oz + 1 -0y 517 |
for all a € (0,1), r > 1.
Theorem 3.30. Let H=H () be a FHS. Let T,S € B(H) and f be
nonnegative increasing operator convez function on [0,00). Then
1 T
£ (ber? (S*T)) < / f ((1 — 1) (a T +(1—a) 15|7<13a>) + ther? (T) I) dt
0 ber

IN

o (71%) + -0y £ (1517%9)
for all o € (0,1), r > 1.

Proof. If we apply Lemma @ to Theorem , then we get required
inequalities. U

ber '

Corollary 3.31. If we take a = % and f (t) =t, then we have
! 1
/ (1—1) ( (]T\‘” + |S\4’">) + ther? (T) Idt
0 2

1
S Z H’T‘4T + ‘S‘4T

ber®” (S*T) <

ber

ber '
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Corollary 3.32. For any T € B(H) and o € (0,1), r > 1, we get the
following inequalities:
2

1 2r 2r
berl" (S*T) < / (0= 1) (lT/% + (L~ a) S5 ) + tbex® (1) 1) d
0

ber

IA

1 ar _Ar
S ARSI R

I

ber

ber?” (T) < H/Ol ((1 — ) (a 7% +(1-a) I) + ther? (T) I)Zdt

ber
1 2r
§§Ha|T]a +(l—a)I

ber

and

ber?” (TZ)

IN

|[ (=0 (am® + a-a) 1@ + oo (1) 1)

r 2r
<[latr® + 0 - a7

ber

ber ’
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