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Abstract: In this work, quantitative structure-property relationship (QSPR) approaches were used to predict the redox 

potential of 42 phenolic antioxidants. The structures of all compounds optimized by the AM1 semi-empirical method and then 

a large number of molecular descriptors were calculated for each compound in the data set. Subsequently, stepwise multilinear 

regression was applied to select the most significant and relevant descriptors. The selected descriptors are; the highest occupied 

molecular orbital energy, the number of hydroxyl groups and harmonic oscillator model of aromaticity. These descriptors were 

used to develop the multiple linear regression (MLR) and artificial neural network (ANN) models. The values of root mean 

square error for ANN model were; 0.049, 0.075 and 0.043 for training, internal and external tests sets, respectively, while these 

values were; 0.061, 0.088 and 0.073, respectively for MLR model. Comparison between these values and other statistical 

parameters for these two models revealed the credibility of ANN in prediction of redox potential of phenolic antioxidants by 

using QSPR approaches. 

Key words: Quantitative structure-property relationship, Artificial neural network, Molecular descriptor, Redox potential, 

Phenolic antioxidant. 
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1. Introduction 

Oxidation is a chemical reaction that transfers 

electrons from a substance to an oxidizing agent. 

Although oxidation reactions are crucial for life, they 

can also be damaging by producing free radicals via 

chain reactions. These radicals are very reactive, 

rapidly attack and oxidize a variety of targets 

including DNA, proteins, enzymes, membranes and 

lipids [1-2]. Free radicals and some of oxygen-

centered free radicals known as reactive oxygen 

species (ROS) (such as superoxide (O2��), peroxyl 

(ROO�), alkoxyl (RO�), hydroxyl (HO�) and nitric 

oxide (NO�)) have been recognized to be harmful and 

play an important role in the initiation and promotion 
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of various disease such as cancer, Alzheimer's, 

Parkinson's, arthritis, asthma, diabetes and 

degenerative eye disease [3-6]. An antioxidant is a 

molecule capable of inhibiting the oxidation of other 

molecules. Antioxidants are often reducing agents 

such as thiols, ascorbic acid (vitamin C), tocopherols 

(vitamin E), phenols and polyphenols [3]. The 

function of antioxidants is to suppressing the 

formation of free radicals by reacting with them at a 

rate faster than the organic substrate [2]. Recent 

studies on antioxidant reaction mechanisms indicated 

that the chain reaction was controlled mainly through 

the free radical-scavenging by phenolic hydroxyls of 

antioxidants [7-9]. These compounds characterized 

by at least one aromatic ring bearing one or more 

hydroxyl groups [8]. The process of phenolic 

antioxidants (ArOH) with a lipid peroxyl radical 

(ROO�), started with abstracting hydrogen atom from 

the phenolic hydroxyl group according to the 

following reaction [9]: 

       

ROO  +  ArOH              ROOH  +  ArO                               (1)
 

The rate of this reaction is much greater than the 

attack of the peyroxyl radicals on the organic 

substrate, that showed by the following: 

     

ROO  +  RH                   ROOH  +  R                                   (2)
 

The redox potential of phenolic antioxidants can be 

affected by their structural features. Therefore, it is 

possible to predict the antioxidant activities of these 

compounds from their theoretical derived molecular 

descriptors. Quantitative structure-activity/property 

relationship (QSAR/QSPR) is a powerful method in 

prediction and interpretation of physicochemical 

properties of chemicals. This method typically 

comprises of two main steps: (i) description of 

molecular structure and (ii) multivariate analysis for 

correlating molecular descriptors with observed 

property. Molecular descriptors are numerical values 

utilize to describe different characteristics about a 

certain structure in order to yield information about 

the property being studied. The key feature of the 

role of in silico techniques is that predictions can be 

made from molecular structure alone [10]. 

Consequently, such method would be an extremely 

beneficial tool for the development of novel 

therapeutic antioxidants that have not been 

synthesized or found. 

The protective role of several classes of antioxidants 

has been widely studied by means of QSPR [11-14]. 

For instance, Bosque and Sales developed a QSPR 

model to predict the O-H bond dissociation energy 

for a set of 78 phenols [15]. They proposed a 

multiple linear regression, contains seven descriptors 

namely �HOMO, topographic electronic index, 

minimum atomic state energy for a C atom, RPCS 

relative positive charged SA, minimum bond order of 

a C atom, ZX shadow, FPSA-3 fractional PPSA. The 

statistical parameters for obtained QSPR model, 

including the correlation coefficient and standard 

error for training and prediction sets were 0.8978, 

6.67, 0.9076 and 4.26, respectively.  

Rasulev et al. has used a QSAR technique to predict 

the inhibition of lipid peroxidation (LPO) effects for 

27 flavonoids [16]. Their results showed that the 

position of the OH groups, the magnitude of dipole 

moment and the shape of molecule play an important 

role in inhibition of LPO by flavonoids. Recently 

Abreu et al. modeling the radical scavenger activity 

(RSA) of 26 di(hetero)arylamine's derivatives of 
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benzo[b]thiophenes by using the partial least squares 

(PLSs) projection of latent structures method [17]. 

Nevertheless, redox potential had been applied 

seldom to build QSPR model. For example, Lien et 

al. derived a linear relationship between the one-

electron redox potential and calculated parameters 

such as heat of formation, number of OH groups and 

energy of lowest unoccupied molecular orbital for 31 

phenolic antioxidants.  

They have reported correlation coefficient of 

R
2
=0.914 and standard error of SE=0.074 for all 

studied phenolic antioxidants. Reis and coworkers 

compared four different computational methods 

including density functional theory (DFT), hartree-

fock, AM1 and PM3 to predict redox potential of 

phenolic antioxidants by using simple and multiple 

linear regression models [18]. Their investigation 

indicated that among these methods, DFT had the 

best function to describe the properties of phenolic 

antioxidants. The vertical ionization potentials (IPvs) 

and the charge on oxygen atom 7, reported to be the 

significant molecular descriptors in this work. The 

main aim of the present work is to development of a 

nonlinear model to study the relationship between 

redox potential of phenolic antioxidants and their 

theoretical calculated molecular descriptors. 

                                                    

2. Experimental 

2.1. Data set 

The values of redox potential of the substituted 

phenols in water at pH 7 (E7) were taken from 

References [18-19] and were used as data set. The 

collection of this data set consists of the redox 

potential for 42 phenol derivatives. 

 Table 1 shows the structure of chemicals in data set 

and their corresponding redox potential, in V. The 

redox potential fall in the range of 0.41 to 1.23 V for 

4-NH2 and 4-NO2 phenol substitutions, respectively. 

The data were sorted according to their redox 

potential and the training, internal and external test 

sets were chosen from this list with desired distance 

from each other. The training, internal and external 

test sets consist of 32, 5 and 5 redox potential data, 

respectively. The training set was used to adjust the 

parameters of the model, while the internal and 

external test sets were applied to prevent overfiting of 

the model and evaluate the model predictivity, 

respectively.  

 

2.2. Descriptors calculation 

 

Molecular descriptors can be defined as a useful 

numbers, which are derived from molecular features 

of the interested molecules. These molecular 

descriptors were mainly computed by using the 

CODESSA software [20-22] and DRAGON (Ver. 

3.0) package [23]. In order to calculate these 

descriptors, all structures of the compounds were 

drawn with Hyperchem (Ver. 7.0) program (Hyper 

(2002) release 7.0 for windows, Hypercube), 

optimized by the AM1 semi-empirical method and 

exported in a file format suitable for MOPAC (Ver. 

6.0) package [24].  

The Hyperchem and MOPAC output files were 

transferred into CODESSA software that can 

calculate constitutional, topological, geometrical, 

electrostatic and quantum chemical descriptors.  
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 Table 1.  Data set and corresponding observed, MLR and ANN predicted values of redox potential in V 

OH
X  

No. Substituent X E7(exp) E7(MLR) Resid(MLR) E7(ANN) Resid(ANN) 

1 4-NO2 1.23 1.26 0.03 1.22 -0.01 

2 3,5-Cl2 1.15 1.09 -0.06 1.10 -0.05 

3 4-CF3 1.13 1.19 0.06 1.18 0.05 

4 3-NO2 1.13ext 1.27 0.14 1.21 0.08 

5 4-PhCO 1.12 1.01 -0.11 1.04 -0.08 

6 3-CN 1.11 1.14 0.03 1.12 0.01 

7 4-I 1.09 1.00 -0.09 0.99 -0.1 

8 4-COOH 1.04 0.98 -0.06 1.03 -0.01 

9 3-CH3CO 0.98 1.07 0.09 1.05 0.07 

10 4-H 0.97 0.96 -0.01 0.93 -0.04 

11 4-Br 0.96ext 0.97 0.01 0.96 0.00 

12 4-Cl 0.94 0.95 0.01 0.93 -0.01 

13 4-F 0.93 0.88 -0.05 0.89 -0.04 

14 Tyrosine 0.89 0.81 -0.08 0.87 -0.02 

15 3-OH, 4-COCH3 0.89int 0.83 -0.06 0.82 -0.07 

16 4-CH3 0.87 0.86 -0.01 0.83 -0.04 

17 3,5-(CH3O)2 0.85 0.81 -0.04 0.82 -0.03 

18 3-CH3 0.85 0.90 0.05 0.88 0.03 

19 3-OH, 5-OCH3 0.84ext 0.78 -0.06 0.80 -0.04 

20 3,5-(CH3)2 0.84 0.9 0.06 0.86 0.02 

21 4-Ph 0.84 0.74 -0.10 0.73 -0.11 

22 2-CH3 0.82 0.89 0.07 0.86 0.04 

23 3-OH 0.81int 0.83 0.02 0.89 0.08 

24 2-OCH3 0.77 0.74 -0.03 0.73 -0.04 

25 4-OCH3 0.73ext 0.75 0.02 0.75 0.02 

26 3,4-(CH3O)2 0.67 0.68 0.01 0.67 0.00 

27 3,4,5-(CH3O)3 0.66 0.57 -0.09 0.56 -0.10 

28 Sesamol 0.62int 0.67 0.05 0.64 0.02 

29 2-OH, 4-COOH 0.60 0.65 0.05 0.61 0.01 

30 2,6-(CH3O)2 0.58 0.63 0.05 0.59 0.01 

31 2,3-(OH)2 0.58 0.52 -0.06 0.52 -0.06 

32 2,3-(OH)2, 5-COOCH3 0.56ext 0.62 0.06 0.59 0.03 

33 3,4-Dihydrocynnamic acid 0.54 0.53 -0.01 0.54 0.00 

34 2-OH 0.53 0.63 0.10 0.57 0.04 

35 2-OH, 4-CH3 0.52 0.58 0.06 0.49 -0.03 

36 4-OH 0.46int 0.64 0.18 0.59 0.13 

37 4-NH2 0.41 0.41 0.00 0.44 0.03 

38 4-CN 1.17 1.09 -0.08 1.09 -0.08 

39 4-COCH3 1.06int 1.06 0.00 1.06 0.00 

40 4-t-Bu 0.80 0.87 0.07 0.84 0.04 

41 2,6-(CH3)2 0.77 0.84 0.07 0.82 0.05 

42 2-OCH3, 4-CH3 0.68 0.70 0.02 0.71 0.03 

         The subscripts of int and ext refer to the internal and external test set, respectively. The substituent X is belonged to the compounds 1-13, 15-27, 29-32 

and 34-42 
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In addition, Hyperchem output files were used by 

DRAGON to calculate some topological descriptors. 

The number of descriptors that were calculated by 

DRAGON and CODESSA software was 947 ones. In 

pre-screening step, constant or near constant values 

of descriptors were omitted from further 

investigation. The relative standard deviation below 

1% was selected as criteria for elimination of 

constant and near constant variables. Since some 

descriptors that generated for each compound 

encoded similar information about the molecule of 

interest, the correlations of descriptors with each 

other were examined and those that showed high 

correlation (R>0.90) were eliminated. Subsequently, 

stepwise multilinear regression method has been 

performed to select the most relevant descriptors by 

SPSS statistics software (Ver. 17.0) [25]. The 

selected descriptors are: the highest occupied 

molecular orbital energy (�HOMO), the number of 

hydroxyl groups (nOH) and harmonic oscillator 

model of aromaticity (HOMA). These descriptors 

were used as inputs for developing of multiple linear 

regressions (MLR) and artificial neural network 

(ANN) models. 

2.3. Artificial neural network 

Artificial neural networks are mathematical methods 

that inspired by studies on biological nervous 

systems. One of the most significant advantages of 

ANNs is that these networks can learn from examples 

and make predictions for new situations. They have 

seen an explosion of interest over the last few years 

and are being successfully applied across an 

extraordinary range of complex and nonlinear 

problem domains such as geology, chemistry, 

medicine, physics and weather forecasting [26-30]. 

Detailed accounts of ANNs theory has been 

extensively described elsewhere [31-34]. Here, only a 

brief description of ANNs principle was given. 

ANNs are composed of simple processing elements 

(nodes or neurons) operating in parallel which are 

organized in some layers. Among many types of 

ANN, the multi-layer perceptron (MLP) associated 

with the back-propagation algorithm, showed the best 

performance. The back-propagation network receives 

a set of inputs, which are multiplied by each node 

and then a nonlinear transfer function is applied. The 

MLP should have at least three layers including 

input, hidden and output layers. The input layer 

simply serves to introduce the values of the input 

variables, which are selected descriptors by stepwise 

variable selection procedure in this investigation. 

Therefore, this network had three nodes in the input 

layer. The number of nodes in the output layer was 

set to be one. This layer handles the output from the 

network, which is redox potential in this study. The 

most important stage in designing MLP is to optimize 

the number of nodes in the hidden layer. After a 

series of trials, a MLP with four nodes in hidden 

layer is found to have the best performance. Then the 

network was trained using the training set. During the 

training, the internal test set was used to prevent of 

over training. The goal of training is to change the 

weights between the layers in a direction to minimize 

the output errors. In order to evaluate the 

performance of network, the root mean square error 

(RMSE) in prediction for training and internal test 

sets were examined and monitored during the 
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learning epochs. Then the performance of the 

network can be tested with a verification set.  

3. Results and discussion 

3.1. Linear modeling 

Multiple linear regressions have been found as a 

useful technique in modeling especially within the 

areas of QSPR. A set of approximately 2000 

molecular descriptors were calculated by means of 

CODESSA and DRAGON softwares. Prior to model 

generation, the correlation between computed 

descriptors was obtained and the numbers of 

significant descriptors reduced according to the 

criteria mentioned in the Section 2.2.  

In order to acquire a reliable equation for structure 

and property relationship, feature selection based on 

stepwise multiple linear regression was performed on 

each different groups of descriptors (constitutional, 

topological, geometrical, electrostatic and quantum 

chemical descriptors) to choose the high informative 

ones.  

Afterwards the total selected descriptors were 

transferred to a spreadsheet to select the ultimate 

descriptors with the application of stepwise 

variable selection method. 

 

         Table 2 Specifications of MLR model 

Descriptors Notation Coefficient 
Standard 

error 

Highest occupied molecular orbital energy �HOMO -0.361 0.032 

Number of hydroxyl groups nOH -0.145 0.018 

Harmonic oscillator model of aromaticity HOMA 1.891 0.568 

Constant  -4.016 0.452 

               n=32, R=0.960, F=108.318, SE=0.065 

 

Table 2 shows the name of selected descriptors as 

well as specifications of the developed MLR model. 

As can be seen from this table three descriptors 

appeared in the MLR model, which are the highest 

occupied molecular orbital energy (�HOMO), the 

number of hydroxyl groups (nOH) and harmonic 

oscillator model of aromaticity (HOMA) index. 

These descriptors encode different topological and 

quantum-chemical aspects of molecular structure. 

Comprehensive details about the chemical meaning 

and the calculation procedure of these descriptors 

were explained adequately in Molecular Descriptors 

for Chemoinformatics by Todeschini et al. [35]. The 

assessment of the generated model was performed by 

applying leave-one-out cross validation test, which 

produce the statistical parameters of Q
2
=0.625 and 

SPRESS=0.0113. These values reveal the predictivity 

and robustness of constructed linear model. 

Moreover, the y-scrambling test was carried out on 

the data set to investigate any chance correlation in 

our modeling. The mean value of R
2
 after 30 times 

reiteration and modeling was 0.386, which suggests 

that the well-founded model is not merely the result 

of pure chance or structural dependency in data set. 
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3.2. Non-linear modeling 

Artificial neural network was applied as a nonlinear 

feature mapping technique to investigate probable 

nonlinear relationship between selected molecular 

descriptors and E7 of phenolic antioxidants. The input 

vectors were descriptors that appeared in the MLR 

model and the signal of the output node represented 

the redox potential of the interested compounds. 

Thus, this network has three nodes in the input layer 

and one node in the output layer. For the purpose of 

the present application, a MLP-NN structure has been 

 

 trained with a back-propagation training procedure 

by means of STATISTICA software (Ver .7.0) [36].  

Before training the network the parameters of the 

nodes in the hidden layer, learning rate and 

momentum were optimized. The procedure for 

optimization of these parameters was explained 

in our previous works [37-38]. The architecture 

and specifications of the optimized network were 

summarized in Table 3. 

 

 

Table 3 The specifications and topology of optimized ANN�

 

�

�

�

�

�

 

 

 

The training continues until the differences between 

predicted E7 and the target values were minimized. 

The iterative training algorithm progresses through a 

number of 12000 epochs but the best network which 

has the lowest error on internal test set was obtained 

at 5073 epoch. Then the trained network was applied 

to predict the E7 for compounds in external test set as 

well as training and internal test sets. 

 The predicted values of E7 for these sets were shown 

in Table 1. Root mean square error value is a fine 

validity criterion to estimate the performance of the 

obtained models. The values of RMSE for MLP-NN 

model were; 0.049, 0.075 and 0.043 for training, 

internal and external tests sets respectively, while 

these values were; 0.061, 0.088 and 0.073 

respectively for MLR model. Other statistical 

parameters including correlation coefficient, average 

Parameter Value 

No. of nodes in the input layer 3 

No. of nodes in the hidden layer 4 

No. of nodes in the output layer 1 

Learning rate 0.01 

Momentum 

Transfer functions 

0.4 

Sigmoid 
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absolute error (AAE), average error (AE) and 

standard deviation (SD) for these models were shown 

in Table 4. Comparison between these parameters 

reveals that, nonlinear MLP-NN model produced 

better results with good predictive ability than linear 

model.Fig. 1 shows the plot of the predicted values 

versus the experimental values of E7 for all molecules 

 in the data set, which indicate the good correlation 

between estimated and experimental E7. In addition, 

the residuals of this calculation are plotted against the 

experimental values of E7 in Fig. 2. The propagation 

of the residuals on both sides of zero line indicates 

that no systematic error exists in developed neural 

network model.  

 

 

 

        Table 4 The statistical parameters of developed MLR and ANN models 

�

 MLR  ANN 

Parameter  
Training set 

Internal 

set 

External 

set 

 Training 

set 
Internal set 

External 

set 

RMSE  0.061 0.088 0.073  0.049 0.075 0.043 

AAE  0.053 0.062 0.058  0.04 0.06 0.034 

AE  0.001 -0.038 -0.034  0.013 -0.032 -0.01 

SD  0.062 0.098 0.082  0.05 0.084 0.048 

R  0.960 0.959 0.962  0.975 0.954 0.985 

 

 

 

 

 

 

 

 

Fig. 1. Plot of predicted vs. experimental values of E7 by ANN model 
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Fig. 2. Plot of residual vs. experimental values of E7 by ANN model (Legends as Fig. 1) 

3.3. Descriptors interpretation 

For inspection of the relative importance and 

contribution of each descriptor in the model, 

sensitivity analysis was conducted on the inputs of 

neural network [39].  

Sensitivity analysis rates variables according to the 

deterioration in modeling performance. The basic 

sensitivity figure is the error ratio, which tells how 

sensitive the output is to a perturbation of the input. 

The reported error ratio is the ratio of the error with 

the variable unavailable (equal to zero) to the ratio 

with its available. Important variables have a high 

error ratio, indicating that the network performance 

deteriorates badly if they are not present. If the error 

ratio is one or lower, then making the variable 

unavailable either has no effect on the performance 

of the network, or actually enhances it. These steps 

performed on the developed network. According to 

the results of this test, the relative importance rank of 

descriptors is: �HOMO > nOH > HOMA. Therefore, 

the �HOMO descriptor with the maximum error ratio 

has the major role to correlate chemical structure of 

phenolic antioxidants to E7.  

The �HOMO is the energy of the highest occupied 

molecular orbital and encodes quantum chemical 

aspect of molecular structure. Molecules with higher 

�HOMO values can donate their electrons more 

easily compared to molecules with lower �HOMO 

values, and hence are more reactive. In agreement 

with the Koopmans theorem, the �HOMO descriptor 

is related to the ionization potential (IP= -�HOMO) 

and has significant effect in oxidation/reduction 

process, in particular for radical reactions [35, 40]. 

The second significant descriptor is the number of 

hydroxyl group, which is a topological descriptor and 

reflecting the molecular composition. As stated in the 

introduction section, abstracting hydrogen atom from 

the phenolic hydroxyl group is the first step to 

initialize the reaction of phenolic antioxidants with 

ROO� radical. Therefore increasing the number of 

hydroxyl groups enhances this reaction. Harmonic 

oscillator model of aromaticity index, which is a 
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delocalization degree index, has the third level of 

importance and accounts the �-electron mobility in a 

molecule and therefore can affects on electron 

donation by a molecule. The appearance of these 

descriptors in developed QSPR models reveals that 

electronic aspects of phenolic derivations have an 

effective role in their antioxidants activities. 

4. Conclusion 

In the present study, MLR and ANN were used as 

linear and non-linear feature mapping techniques to 

correlate the redox potential of some phenolic 

antioxidants to their calculated molecular descriptors. 

The calculated statistical parameters of these models 

revealed that ANN was better than MLR, which 

means that there are some non-linear relations 

between selected molecular descriptors and redox 

potential of phenolic antioxidants. Descriptors, which 

appeared in these models, were quantum chemical 

and topological types and are highly informative 

about E7 of phenolic antioxidants. Besides, the 

successful results of this investigation signified that 

QSPR method based on semi-empirical calculated 

molecular descriptors is appropriate enough to 

predict the redox potential of phenolic antioxidants. 
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