Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran http://cjms.journals.umz.ac.ir ISSN: 2676-7260 CJMS. **12**(1)(2023), 204-210

(RESEARCH PAPER)

Some new properties of non-abelian tensor analogues of 2-auto Engel groups

Mostafa Sajedi² and Hamid Darabi $^{2\ 1}$

² Department of Mathematics, Esfarayen University of Technology, Esfarayen, Iran

ABSTRACT. In this paper, we study the concept of 2_{\otimes} -auto Engel groups. Among other results, we prove that for any group G, if every element of $G \otimes Aut(G)$ is 2_{\otimes} -Engel group, then $\left\langle (g \otimes \alpha), (g \otimes \alpha)^{g' \otimes \alpha'} \right\rangle$ is a nilpotent subgroup of class at most 2 in $G \otimes Aut(G)$, for all $g, g' \in G$ and $\alpha, \alpha' \in Aut(G)$.

Keywords: Non-abelian tensor product, auto Engel element, autocommutator subgroup.

2020 Mathematics subject classification: 20F28, 20F45.

1. INTRODUCTION AND PRELIMINARIES

Let G and H be groups equipped with the actions of G on H and H on G (both from the right), written as h^g and g^h for all $g \in G$ and $h \in H$, in such a way that

$$g'^{(h^g)} = \left((g'^{g^{-1}})^h \right)^g, \qquad h'^{(g^h)} = \left((h'^{h^{-1}})^g \right)^h,$$

for all $g, g' \in G$ and $h, h' \in H$ (see [2, 3] for more information). Clearly, a group acts on itself by conjugation. By considering the above compatibility of groups action, the non-abelian tensor product $G \otimes H$

¹Corresponding author: darabi@esfarayen.ac.ir Received: 03 November 2021 Revised: 15 July 2023 Accepted: 17 May 2023

²⁰⁴

is the group generated by the symbols $g \otimes h$, satisfying the following relations:

$$gg' \otimes h = \left(g^{g'} \otimes h^{g'}\right) \left(g' \otimes h\right),$$
$$g \otimes hh' = \left(g \otimes h'\right) \left(g^{h'} \otimes h^{h'}\right),$$

for all $g, g' \in G$ and $h, h' \in H$.

Let G be a group and denote Aut(G) to be the automorphisms group of G. For all elements $g_1, g_2, \ldots, g_n \in G$, we denote the commutator of g and g_1 as $[g, g_1] = g^{-1}g_1^{-1}gg_1$. The commutator of higher weight is defined inductively, as follows:

$$[g, g_1, g_2, \dots, g_{n-1}, g_n] = [[g, g_1, g_2, \dots, g_{n-1}], g_n]$$

If $g_1 = g_2 = \cdots = g_n$, we have

$$[g, g_1, g_1, \dots, g_1] = [[g, g_1, g_2, \dots, g_{n-1}], g_n] = [g_{n}, g_1]$$

The element $g \in G$ is called right *n*-Engel element, if $[g_{,n} g_1] = 1$, for all $g_1 \in G$. The set of all right *n*-Engel elements of the group G is defined as follows:

$$R_n(G) = \{g \in G : [g_n, g_1] = 1, for all g_1 \in G\}.$$

In [4], it is shown that $R_2(G)$ is a characteristic subgroup of G. Note that one has a similar set up for left *n*-Engel elements.

Moghaddam and Sadeghifard [6] introduced the concept of non-abelian tensor product $G \otimes Aut(G)$, with the action of G on Aut(G) given by $\alpha^g := \alpha^{\varphi_g} = \varphi_{g^{-1}} \circ \alpha \circ \varphi_g$ for any $\alpha \in Aut(G)$ and $\varphi_g \in Inn(G)$, and the action of Aut(G) on G, by $g^{\alpha} = \alpha(g)$.

We remind the auto-commutator subgroup (see[8], for more information)

$$K(G) = < [g, \alpha] : g \in G, \alpha \in Aut(G) > .$$

Clearly, it is a characteristic subgroup of G.

Now, one may define 2-auto Engel subgroup of G, as follows:

$$AR_2(G) = \{ g \in G : [[g, \alpha], \alpha] = 1 \},\$$

and likewise right 2_{\otimes} -auto Engel sub group of G

$$AR_2^{\otimes}(G) = \{g \in G : [g, \alpha] \otimes \alpha = 1_{\otimes}, \text{ for all } \alpha \in Aut(G)\},\$$

which is a characteristic subgroup of G and contained in $AR_2(G)$. Clearly $[\alpha, g] = [g, \alpha]^{-1}$ and so by a similar way we define the set of left 2_{\otimes} -auto Engel elements of G, as follows:

$$AL_2^{\otimes}(G) = \{g \in G : [\alpha, g] \otimes \varphi_g = 1_{\otimes}, \text{ for all } \alpha \in Aut(G)\}$$

which is contained in $AL_2(G) = \{g \in G : [[\alpha, g], \varphi_g] = 1\}$. A group G is an *n*-auto Engel group if $[g_n \alpha] = 1$ for all $g \in G$ and $\alpha \in Aut(G)$ and $[g_{n}\alpha] = [[g_{n-1}\alpha], \alpha]$. Similarly, the group G is called n_{\otimes} -auto Engel, when $[g_{n-1}\alpha] \otimes \alpha = 1_{\otimes}$ for all $g \in G$ and $\alpha \in Aut(G)$. One can easily check that every n_{\otimes} -auto Engel group is also *n*-auto Engel (see [2]).

In this paper, among results relation to 2_{\otimes} -auto Engel group, we prove that if the normal closure of every element in $G \otimes Aut(G)$ is a 2_{\otimes}-Engel group, then $\left\langle (g\otimes \alpha), (g\otimes \alpha)^{g'\otimes \alpha'} \right\rangle$ is a nilpotent of class at most 2 in $G \otimes Aut(G)$, where $g, g' \in G$ and $\alpha, \alpha' \in Aut(G)$

In the following, we list some basic and important results on nonabelian tensor product $G \otimes Aut(G)$, which will be need in the rest of the paper.

Lemma 1.1. Let g be a right 2-auto Engel element, and let α, β , and γ be arbitrary automorphisms of a group G. Then

(i) $g^{Aut(G)} = \langle g^{\alpha} : \alpha \in Aut(G) \rangle$ is abelian,

(*ii*)
$$[g, [\alpha, \beta]] = [g, \alpha, \beta]^2$$
,

(*iii*) $[q, \alpha, \beta, \gamma]^2 = 1.$

Proof. See [9, Lemma 3.2].

Lemma 1.2 ([2]). Let $g, g' \in G$ and let $\alpha, \beta \in Aut(G)$. The following relations are hold in $G \otimes Aut(G)$:

- (i) $(g^{-1} \otimes \alpha)^g = (g \otimes \alpha)^{-1} = (g \otimes \alpha^{-1})^{\alpha};$ (ii) $(g' \otimes \beta)^{(g \otimes \alpha)} = (g' \otimes \beta)^{[g,\alpha]};$
- (iii) $[g, \alpha] \otimes \beta = (g \otimes \alpha)^{-1} (g \otimes \alpha)^{\beta};$
- (iv) $g' \otimes [g, \alpha] = (g \otimes \alpha)^{-g'} (g \otimes \alpha);$
- (v) $[g \otimes \alpha, g' \otimes \beta] = [g, \alpha] \otimes [\varphi_{q'}, \beta].$

If A is a subset of Aut(G), then we may define the auto-tensor centralizer of A in G as follows:

$$C_G^{\otimes}(A) = \{ g \in G : g \otimes \alpha = 1_{\otimes}, \text{ for all } \alpha \in A \}.$$

It is easy to check that $C_G^{\otimes}(A)$ is a subgroup of G.

Proposition 1.3 ([6]). Let G be a group. Then, for all $\alpha, \beta, \gamma \in Aut(G)$, $g \in AR_2^{\otimes}(G)$, and $n \in \mathbb{Z}$, the following assertions are hold:

- (i) $[g, \alpha] \otimes \beta = ([g, \beta] \otimes \alpha)^{-1};$
- (*ii*) $[g,\alpha]^{\beta} \otimes \alpha = 1_{\otimes};$
- $\begin{array}{l} (iii) \quad [g,\alpha]^n \otimes \beta = ([g,\alpha] \otimes \beta)^n; \\ (iv) \quad g^{-1} \otimes \alpha = (g \otimes \alpha)^{-1}; \end{array}$

$$\begin{array}{l} (v) \ [g,\alpha] \otimes [\beta,\gamma] = 1_{\otimes}; \\ (vi) \ g \otimes [\alpha,\beta] = ([g,\alpha] \otimes \beta)^2 \end{array}$$

Theorem 1.4 ([6]). For a given group G, the set of all 2_{\otimes} -auto Engel elements is a characteristic subgroup of G.

2. Main result

In this section, we explain some properties and a generalization of 2_{\otimes} -auto Engel group. First, we start with some properties of two sets $AR_2^{\otimes}(G)$ and $AL_2^{\otimes}(G)$.

Lemma 2.1. Let G be any group. Then the following conditions are hold

- (i) $AR_2^{\otimes}(G) \subseteq AR_2(G),$ (ii) $AL_2^{\otimes}(G) \subseteq AL_2(G),$ (iii) $AR_2^{\otimes}(G) \subseteq AL_2^{\otimes}(G).$

Proof. (i) Let $g \in AR_2^{\otimes}(G)$ and let $\kappa : G \otimes Aut(G) \longrightarrow K(G)$ given by $\kappa(g \otimes \alpha) = [g, \alpha]$ be the autocommutator map. Then $1 = \kappa([g, \alpha] \otimes \alpha) =$ $[g, \alpha, \alpha]$, so $g \in AR_2(G)$.

(ii) It is proved in a similar way.

(*iii*) To prove (*iii*), suppose that $g \in AR_2^{\otimes}(G)$ and that $\alpha \in Aut(G)$. Then $1_{\otimes} = [g, \varphi_g \alpha] \otimes \varphi_g \alpha = [g, \alpha] \otimes \varphi_g \alpha = ([g, \alpha] \otimes \varphi_g)^{\alpha}$. Therefore $[\alpha, g] \otimes \varphi_g = 1_{\otimes}$ and so $g \in AL_2^{\otimes}(G)$.

Theorem 2.2. Let G be a 2_{\otimes} -auto Engel group. Then Aut(G) is nilpotent of class at most 2.

Proof. By applying Proposition 1.3, we have

$$g \otimes [\alpha, \beta, \gamma] = ([g, [\alpha, \beta]] \otimes \gamma)^2 = (([g, \gamma] \otimes [\alpha, \beta])^{-1})^2 = 1_{\otimes}$$

for all $g \in G$ and $\alpha, \beta, \gamma \in Aut(G)$. Therefore $[\alpha, \beta, \gamma] = id_G$ and so Aut(G) is nilpotent of class at most 2.

Safa et al [9] proved that if a given group G is a 2-auto Engel group, then every maximal abelian subgroup of G is characteristic. Now, we claim that if G is a 2_{\otimes} -auto Engel group, then every maximal abelian subgroup of G is characteristic.

Theorem 2.3. Let G be a 2_{\otimes} -auto Engel group. Then every maximal abelian subgroup of G that is inside the tensor center of that group of G, is characteristic.

Proof. Let M be a maximal abelian subgroup of non-abelian group G. Since the tensor center M of G is $C_G^{\otimes}(M) = \{g \in G : g \otimes m =$ 1_{\otimes} for all $m \in M$, the hypothesis implies that $M \leq C_G^{\otimes}(M)$. Now, suppose $g \in C_G^{\otimes}(M)$. Then $M \langle g \rangle$ is a subgroup of G and contained in M. By the assumption, $M = M \langle g \rangle$, so $M = C_G^{\otimes}(M)$. Now, we show that for every $\alpha \in Aut(G)$, the tensor centralizer of α in G defined by $C_G^{\otimes}(\alpha) = \{g \in G : g \otimes \alpha = 1_{\otimes}\}$, is a characteristic subgroup of G. Let β be an arbitrary automorphism of G and let $h \in C_G^{\otimes}(\alpha)$. Using Proposition 1.3 (vi), we have

$$(\beta(h) \otimes \alpha)^{\beta^{-1}} = h \otimes \alpha^{\beta^{-1}} = h \otimes \alpha[\alpha, \beta^{-1}] = ([h, \alpha] \otimes \beta^{-1})^2 = 1_{\otimes}.$$

Therefore, $\beta(h) \in C_G^{\otimes}(\alpha)$. Hence $C_G^{\otimes}(\alpha)$ is a characteristic subgroup of G. Let φ_g be the inner automorphism produced by g. Then by using the relations of the nonabelian tensor product, we have

$$M = C_G^{\otimes}(M) = \bigcap_{g \in M} C_G^{\otimes}(g) = \bigcap_{g \in M} C_G^{\otimes}(\varphi_g).$$

Hence M is a characteristic subgroup of G.

The following proposition provides equivalent conditions for 2_{\otimes} -auto Engel groups.

Proposition 2.4. The following statements for a group G are equivalent:

- (i) G is 2_{\otimes} -auto Engel;
- (ii) $[g, \alpha] \otimes \beta = ([g, \beta] \otimes \alpha)^{-1}$ for any $g \in G$ and $\alpha, \beta \in Aut(G)$;
- (*iii*) $g \otimes [\alpha, \beta] = ([g, \alpha] \otimes \beta)^2$ for any $g \in G$ and $\alpha, \beta \in Aut(G)$.

Proof. By Proposition 1.3, parts (i), (ii), and (iii) are equivalent. As $g \otimes [\alpha, \beta] = ([g, \alpha] \otimes \beta)^2$ for any $g \in G$ and $\alpha, \beta \in Aut(G)$, so by considering $\alpha = \beta$, the parts (ii) and (iii) gives (i).

Proposition 2.5. If G is a 2_{\otimes} -auto Engel group, then $C_G^{\otimes}(\alpha) \leq G$ for any $\alpha \in Aut(G)$.

Proof. Let G be a 2_{\otimes} -auto Engel group, let $h \in G$, let $\alpha \in Aut(G)$, and let $g \in C_G^{\otimes}(\alpha) \leq C_G(\alpha)$. Then $g^h \otimes \alpha = g[g,h] \otimes \alpha = [g,h] \otimes \alpha = ([g,\alpha] \otimes \phi_h)^{-1} = 1_{\otimes}$. Therefore $g^h \in C_G^{\otimes}(\alpha)$, which completes the proof. \Box

As $C_G^{\otimes}(\alpha)$ does not necessarily contain α , the converse of Proposition 2.5 does not hold, in general.

Lemma 2.6. Let G be a group, let $\alpha, \beta, \gamma \in Aut(G)$, and let $g \in AR_2^{\otimes}(G)$. Then the following assertions are hold:

- (i) $[\alpha, \beta, g] \otimes \gamma = 1_{\otimes};$
- (*ii*) $[g, \alpha, \beta] \otimes [\gamma, \gamma'] = 1_{\otimes}.$

Proof. (i): By parts (iv) and (v) of Proposition 1.3, we have

$$[\alpha,\beta,g]\otimes\gamma = ([g,[\alpha,\beta]]\otimes\gamma)^{-[\alpha,\beta,g]} = ([g,\gamma]\otimes[\alpha,\beta])^{[\alpha,\beta,g]} = 1_{\otimes}.$$

(*ii*): According to [6], we know that $AR_2^{\otimes}(G)$ is always a characteristic subgroup of G. Therefore $[g, \alpha] \in AR_2^{\otimes}(G)$. Thus, part (v) of Proposition 1.3 implies that (*ii*) is hold. \Box

For a given group G, we define the 2_{\otimes} -auto Engel margins analogues of the subgroups 2_{\otimes} -Engel margins (see [7]) as

$$AE_1^{\otimes}(G) = \{g \in G : [gh, \alpha] \otimes \alpha = [h, \alpha] \otimes \alpha \quad \text{ for all } h \in G \quad and \quad \alpha \in Aut(G) \}.$$

Moravec [7] showed that $E_1^{\otimes}(G) = \{g \in G : [gh, h'] \otimes h' = [h, h'] \otimes h'$ for all $h, h' \in G\}$ is a characteristic subgroup of G. Now, we want to show that $AE_1^{\otimes}(G)$ is also a characteristic subgroup of G.

Theorem 2.7. Let G be a group. Then, the set of 2_{\otimes} -auto Engel margins is a subgroup of the group G.

Proof. Obviously, $AE_1^{\otimes}(G)$ is a characteristic set. Now, using [6, Lemma 3.3] and the commutator properties, we have

$$[g^{-1}h,\alpha]\otimes\alpha = [g^{-1},\alpha]^{\varphi_h}[h,\alpha]\otimes\alpha = ([g^{-1},\alpha]^{\varphi_h}\otimes\alpha)^{[h,\alpha]}([h,\alpha]\otimes\alpha) = [h,\alpha]\otimes\alpha,$$

which implies that $g^{-1} \in AE_1^{\otimes}(G)$. Using [6, Lemma 3.3] and the rules of non-abelian tensor product, we obtain

$$\begin{split} [gah,\alpha]\otimes\alpha &= ([ga,\alpha]^{\varphi_h}\otimes\alpha)([h,\alpha]\otimes\alpha) \\ &= ([g,\alpha]^{\varphi_a\varphi_h}\otimes\alpha)^{[a,\alpha]^{\varphi_h}}([a,\alpha]^{\varphi_h}\otimes\alpha)([h,\alpha]\otimes\alpha) = [h,\alpha]\otimes\alpha, \end{split}$$

for all $g, a \in AE_1^{\otimes}(G)$ and $\alpha \in Aut(G)$. Therefore, this completes the proof.

Clearly, $AE_1^{\otimes}(G) \leq AR_2^{\otimes}(G)$. Indeed the inverse of the previous relation holds when α commutes with inner automorphism φ_g for all $g \in G$. The following corollary shows the properties of nilpotency for 2_{\otimes} -auto Engel groups.

Corollary 2.8. For a given group G, if the normal closure of every element in $G \otimes Aut(G)$ is a 2_{\otimes} -Engel group, then for $g, g' \in G$ and $\alpha, \alpha' \in Aut(G)$, the group $\langle (g \otimes \alpha), (g \otimes \alpha)^{g' \otimes \alpha'} \rangle$ is nilpotent of class at most 2.

Proof. From Lemma 1.2 parts (ii) and (v), we have

$$[(g\otimes\alpha)^{(g'\otimes\alpha')},g\otimes\alpha,(g\otimes\alpha)]=[[g,\alpha]^{[g,\alpha']},[g,\alpha]]\otimes[g,\alpha]=1_{\otimes}.$$

Again, by using parts (ii) and (v) of Lemma 1.2, we have

$$\begin{split} [(g \otimes \alpha)^{(g' \otimes \alpha')}, g \otimes \alpha, (g \otimes \alpha)^{(g' \otimes \alpha')}] \\ &= [[\varphi_g, \alpha]^{[g'\alpha']}, [\varphi_g, \alpha]] \otimes [\varphi_g, \alpha]^{[g', \alpha']} \\ &= [[\varphi_g, \alpha], [\varphi_g, \alpha]^{[g', \alpha']^{-1}} \otimes [\varphi_g, \alpha]^{[g', \alpha']}] \\ &= ([[\varphi_g, \alpha], [\varphi_g, \alpha]^{[g', \alpha']}] \otimes [\varphi_g, \alpha]^{[g', \alpha']})^{-[[\varphi_g, \alpha], [\varphi_g, \alpha]^{[g', \alpha']}]^{-1}} \\ &= ([[\varphi_g, \alpha]^{[g', \alpha']}, [\varphi_g, \alpha]] \otimes [\varphi_g, \alpha])^{-[g', \alpha'][[\varphi_g, \alpha], [\varphi_g, \alpha]^{[g', \alpha']}]^{-1}} \\ &= 1_{\otimes}. \end{split}$$

Hence $[(g \otimes \alpha)^{(g' \otimes \alpha')}, g \otimes \alpha] \in Z(\langle g \otimes \alpha, (g \otimes \alpha)^{(g' \otimes \alpha')} \rangle)$, as required. \Box

References

- D. P. Biddle, L. C. Kappe, On subgroups related to tensor center *Glasg. Math. J.* 45 (2003) 323–332.
- [2] R. Brown, D. L. Johnson, E.F. Robertson, Some computations of nonabelian tensor products of groups J. Algebra 111 (1987) 177–202.
- [3] R. Brown, J. L. Loday, Van Kampen theorems for diagrams of spaces. With an appendix by M. Zisman. *Topology* 26 (1987) 311–335.
- [4] W. P. Kappe, Dia A-Norm einer Gruppe, Illinois J. Math. 5 (1961) 187–197.
- [5] L. C. Kappe, Finite covering by 2-Engel groups Bull. Aust. Math. Soc. 38 (1988) 141–150.
- [6] M. R. R. Moghaddam, M. J. Sadeghifard, Nonabelian tensor analogues of 2-auto Engel groups Bull. Korean Math. Soc. 52 (2015) 1097–1105.
- [7] P. Moravec, On nonabelian tensor analogues of 2-Engel conditions Glasg. Math. J. 47 (2005) 77–86.
- [8] P. V. Hegarty, The absolute centre of a group, J. Algebra. 169 (3) (1994), 929– 935.
- [9] H. Safa, D. G. Farrokhi, M. R. R. Moghaddam, Some properties of 2-auto Engel groups, *Houston J. Math.* 44 (1) (2018) 31–48.