تعداد نشریات | 31 |
تعداد شمارهها | 479 |
تعداد مقالات | 4,665 |
تعداد مشاهده مقاله | 7,304,118 |
تعداد دریافت فایل اصل مقاله | 5,466,305 |
بررسی تأثیر مصالح پیادهراهها در آسایش حرارتی محیط شهری (با تأکید بر کفسازی سرد) | ||
مطالعات ساختار و کارکرد شهری | ||
دوره 11، شماره 39، 1403، صفحه 217-246 اصل مقاله (1.08 M) | ||
نوع مقاله: علمی- پژوهشی | ||
شناسه دیجیتال (DOI): 10.22080/usfs.2024.26353.2396 | ||
نویسندگان | ||
هیوا حسن زاده1؛ مریم آزموده* 2؛ نجمه ماستری فراهانی3 | ||
1کارشناسی ارشد، گروه معماری، دانشکده معماری و شهرسازی، دانشگاه بینالمللی امام خمینی (ره)، قزوین، ایران. | ||
2استادیار، گروه معماری، دانشکده معماری و شهرسازی، دانشگاه بینالمللی امام خمینی (ره)، قزوین، ایران | ||
3گروه معماری و شهرسازی، دانشگاه فنی و حرفه ای، تهران، ایران | ||
تاریخ دریافت: 05 آذر 1402، تاریخ بازنگری: 30 دی 1402، تاریخ پذیرش: 26 اسفند 1402 | ||
چکیده | ||
گسترش جوامع شهری موجب بروز تغییرات قابل توجهی در شرایط محیط زندگی انسانها شد. این تغییرات مشکلات زیادی ازجمله افزایش تنشهای حرارتی و عدم برقراری آسایش حرارتی در فضای شهرها را به وجود آوردند. ازجملۀ این تغییرات حضور سطوح مصنوع در فضاهای شهری است که جایگزین سطوح طبیعی شده است و درصد بالایی از سطح شهرها را شامل میشوند. تفاوت در ویژگیهای سطوح مصنوع، تأثیر آنها را بر شرایط آسایش حرارتی محیط، نسبت به سطوح طبیعی متفاوت کرده است. در این پژوهش پیادهراهها که بخش بزرگی از سطوح مصنوع در شهرها را شامل میشوند، موضوع مورد مطالعه است و اثرات تغییر در ویژگیهای آنها بر آسایش حرارتی در فضاهای باز ارزیابی میشود. در این مطالعه از روشهای اندازهگیریهای میدانی و شبیهسازی عددی استفاده شده است. اندازهگیریهای میدانی بهوسیله دستگاه دیتالاگر و در محوطه دانشگاه امام خمینی قزوین انجام شد. همچنین با مدلسازی سایت توسط نرمافزار انویمت شبیهسازیهای عددی برای گرمترین روز از سال (25 تیر1401) انجام شد. نتایج دادههای بهدستآمده از شبیهسازیها با دادههای اندازهگیری شده اعتبارسنجی شد. سپس دو ویژگی مصالح پیادهراه، آلبدو (ضریب بازتاب) و ضخامت مصالح در مقادیر مختلف شبیهسازی و نتایج بهدستآمده از تاثیرگذاری آنها بر روی PET آسایشحرارتی محیط توسط دو شاخص دمای معادل فیزیولوژیکی و شاخص جهانی آبوهوای حرارتی (UTCI) ارزیابی شد. براساس نتایج، آلبدو اثرگذاری بیشتری بر روی شاخصهای حرارتی دارد که کاهش در مقدار آن از 0.8 به 0.2 حداکثر 3 و بهطور متوسط 0.4 درجه سانتیگراد باعث کاهش در شاخص آسایش حرارتی PET خواهد شد. ضخامت مصالح پیادهراهها نیز مورد ارزیابی قرار گرفت که نتایج مربوط به آن نشاندهندۀ اثرگذاری بسیار کم و مقطعی تغییرات این مشخصه، بر روی آسایش حرارتی محیط است. | ||
کلیدواژهها | ||
آسایش حرارتی؛ فضای شهری؛ مصالح پیاده راه؛ آلبدو؛ ضخامت مصالح | ||
عنوان مقاله [English] | ||
Evaluating the Effect of the Characteristics of Sidewalk Mate-rials in Improving the Thermal Comfort of the Urban Environ-ment with an Emphasis on Cool Pavement | ||
نویسندگان [English] | ||
Hiva Hassanzadeh1؛ Maryam Azmoodeh2؛ Najmeh Masteri Farahani3 | ||
1Master of Science, Department of Architecture, Faculty of Architecture and Urbanism, Imam Khomeini Interna-tional University, Qazvin, Iran | ||
2assistant professor, Department of Architecture, Faculty of Architecture and Urbanism, Imam Khomeini Inter-national University, Qazvin, Iran | ||
3Department of Architecture and Urban Planning, Technical and Vocational University (TVU), Tehran, Iran | ||
چکیده [English] | ||
The expansion of urban societies caused significant changes in the living environment of humans. These changes caused many problems, including the increase in thermal tensions and lack of thermal comfort in the cities. Among these changes is the presence of artificial surfaces in urban spaces, which have replaced natural surfaces and include a high percentage of the surface of cities. The difference in the characteristics of the artificial surfaces has made their impact on the thermal comfort conditions of the environment different compared to the natural surfaces. In this research, sidewalks, which include a large part of artificial surfaces in cities, are the subject of study, and the effects of changes in their characteristics on thermal comfort in open spaces are evaluated. Field measurements and numerical simulation methods were used in this study. Field measurements were carried out by a data logger on the campus of Imam Khomeini University of Qazvin. Also, numerical simulations were performed for the hottest day of the year (July 25, 1401) by modeling the site using Envimet software. The results of the data obtained from the simulations were validated with the measured data. Then two characteristics of pavement materials, albedo (reflection coefficient) and material thickness, were investigated in different amounts of simulation and the results obtained from their impact on the thermal comfort of the environment were evaluated by two indices of Physiological Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI). According to the results, albedo has a greater effect on thermal indices, and reducing its value from 0.8 to 0.2 to a maximum of 3 and an average of 0.4 degrees Celsius will cause a decrease in the thermal comfort index of PET. The thickness of the pavement materials was also evaluated, and the related results indicate the very small and partial effect of changes in this characteristic on the thermal comfort of the environment. | ||
کلیدواژهها [English] | ||
Thermal comfort, urban space, pavement materials, Albedo, material thickness | ||
مراجع | ||
Akbari, H., Shea, R., & Haider, T. (2003). Analyzing the land cover of an urban environment using high-resolution orthophotos, Landscape and Urban Planning 63, Pages 1-14. (In Persian)
Andreas Matzarakis, Helmut Mayer,Moses G. Iziomon, Applications of a universal thermal index:physiological equivalent temperature, Int J Biometeorol (1999) 43:76–84
Anupam, B-R., Sahoo, U-C., Chandrappa, A., & Rath, P. (2021). Emerging technologies in cool pavements: A review/Construction and Building Materials 299, 123892.
AzariJafari, H., Xu, X., Gregory, J., & Kirchain, R. (2021). Urban-Scale Evaluation of Cool Pavement Impacts on the Urban Heat Island Effect and Climate Change, Environmental Science & Technology. 55 (17), 11501-11510.
Battisti, A., Laureti, F., Zinzi, M., & Volpicelli, G. (2018). Climate Mitigation and Adaptation Strategies for Roofs and Pavements: A Case Study at Sapienza University Campus/ Sustainability, 10, 3788
Chen, J., Chu, R., Wang, H., Zhang, L., Chen, X., & Du, Y. (2019). Alleviating urban heat island effect using high conductivity permeable concrete pavement, Journal of Cleaner Production.
Chen, L., Ng, E. (2012). Outdoor thermal comfort and outdoor activities: A review of research in the past decade, Cities 29, Pages 118-125
Dimoudi, A., Zoras, S., Kantzioura, A., Stogiannou, X., Kosmopoulos, P., & Pallas, C. (2014). Use of cool materials and other bioclimatic interventions in outdoor places in order to mitigate the urban heat island in a medium size city in Greece, Sustainable Cities and Society, Volume 13, Pages 89-96.
Djekic, J., Djukic, A., Vukmirovic, M., Djekic, P., & Dinic Brankovic, M. (2017). Thermal Comfort of Pedestrian Spaces and the Influence of Pavement Materials on Warming Up During Summer, Energy and Buildings.
Erell, E. (2013). Effect of high-albedo materials on pedestrian heat stress in urban street canyons. Urban Climate.
Faragallah, R-N., Ragheb, R-A. (2021). Evaluation of thermal comfort and urban heat island through cool paving materials using ENVI-Met/, Ain Shams Engineering Journal. (In Persian)
Ferrari, A., Kubilay, A., Derome, D., & Carmeliet, J. (2020). The use of permeable and reflective pavements as a potential strategy for urban heat island mitigation, Urban Climate 31, 100534.
Huang, J-M., Chen, L-C. A. (2020). Numerical Study on Mitigation Strategies of Urban Heat Islands in a Tropical Megacity: A Case Study in Kaohsiung City, Taiwan, Sustainability, 12, 3952.
Jia, S., Wang, Y. (2021). Effect of heat mitigation strategies on thermal environment, thermal comfort, and walkability: A case study in Hong Kong/Building and Environment 201, 107988.
Karakounos I., Dimoudi A. Zoras S. (2018). The influence of bioclimatic urban redevelopment on outdoor thermal comfort, Energy and Buildings, 158:1266.
Lai, D., Lian, Z., Liu, W., Guo, C., Liu, W., Liu, K., & Chen, Q. (2020). “A comprehensive review of thermal comfort studies in urban open spaces,” Accepted by Science of the Total Environment
Laurence, S., Kalkstein, D., Edith, B., de Guzman, D., & Sailor, J. (2022). increasing trees and high albedo surfaces decreases heat impacts and mortality in Los Angeles, CA, International Journal of Biometeorology.
Li, H. (2016). Pavement materials for heat island mitigation: Design and management strategies, Butterworth-Heinemann.
Li, J., Liu, N. (2020). The perception, optimization strategies and prospects of outdoor thermal comfort in China: A review, Building and Environment 170, 106614.
Lu, Y., Rahman, M.A., Moore, N.W., & Golrokh, A.J. (2022). Lab-Controlled Experimental Evaluation of Heat Reflective Coatings by Increasing Surface Albedo for Cool Pavements in Urban Areas. Coatings, 12, 7.
Nasrollahi, N., Ghosouri, A., Khodakarami, J., & Taleghani, M. (2020). Heat-Mitigation Strategies to Improve Pedestrian Thermal Comfort in Urban Environments: A Review, Sustainability, 12, 10000. (In Persian)
Nasrollahi, N., Hatami, Z., & Taleghani, M. (2017). Development of outdoor thermal comfort model for tourists in urban historical areas; A case study in Isfahan, Building and Environment. (In Persian)
Qin, Y. A. (2015). review on the development of cool pavements to mitigate urban heat island effect, Renewable and Sustainable Energy Reviews, Volume 52, Pages 445-45.
Taghvaie, A., Shafiee, E., Heidari, S. (2023). Assessment of Urban Heat Mitigation Strategies to Improve Outdoor Thermal Comfort Regarding Carbon Dioxide Concentration in Tehran Metropolis. Int J Environ Res 17, 36. (In Persian)
Taleghani, M. (2018). the impact of increasing urban surface albedo on outdoor summer thermal comfort within a university campus, Urban Climate, Volume 24, Pages 175-184. (In Persian)
Taleghani, M., Sailor, D., & Ban-Weiss, G. (2016). Micrometeorological simulations to predict the impacts of heat mitigation strategies on pedestrian thermal comfort in a Los Angeles neighborhood, Environ. Res. Lett. 11, 024003. (In Persian)
Tsoka, S., Tsikaloudaki, K., & Theodosiou, T. (2019). coupling a Building Energy Simulation Tool with a Microclimate Model to Assess the Impact of Cool Pavements on the Building’s Energy Performance Application in a Dense Residential Area, Sustainability, 11, 2519.
U.S. Environmental Protection Agency. (2012). "Cool Pavements." In: Reducing Urban Heat Islands: Compendium of Strategies.
Xie, J., Zhou, Z. (2022). Numerical Analysis on the Optimization of Evaporative Cooling Performance for Permeable Pavements. Sustainability, 14, 4915.
Yang, J., Wang, Z-H., & Kamil, E. (2016). Heather Dylla, Effect of pavement thermal properties on mitigating urban heat islands: A multi-scale modeling case study in Phoenix, Building and Environment 108, 110-121.
Yang, L., Liu, J., & Zhu, S. (2022). Evaluating the Effects of Different Improvement Strategies for the Outdoor Thermal Environment at a University Campus in the Summer: A Case Study in Northern China. Buildings, 12, 2254.
| ||
آمار تعداد مشاهده مقاله: 314 تعداد دریافت فایل اصل مقاله: 194 |