تعداد نشریات | 31 |
تعداد شمارهها | 479 |
تعداد مقالات | 4,665 |
تعداد مشاهده مقاله | 7,303,943 |
تعداد دریافت فایل اصل مقاله | 5,466,193 |
Tracing Hypervariable Region I (HVR-I) of Mitochondrial DNA in Iranian Ethnic Groups | ||
Journal of Genetic Resources | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 09 مهر 1403 اصل مقاله (438.8 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22080/jgr.2025.28072.1410 | ||
نویسندگان | ||
Misagh Moridi1؛ Mostafa Ghaderi-Zefrehei2؛ Anousheh Shastiri3؛ Mustafa Muhaghegh Dolatabady* 2 | ||
1Department of Animal Science, Faculty of Agriculture, Guilan University, Rasht, Guilan, Iran | ||
2Department of Animal Science, Faculty of Agriculture, Yasouj University, Yasouj, Iran | ||
3Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran | ||
تاریخ دریافت: 13 مرداد 1403، تاریخ بازنگری: 11 دی 1403، تاریخ پذیرش: 24 شهریور 1403 | ||
چکیده | ||
Genetic markers can confirm the role of ethnicity in forensic investigations. Mitochondrial DNA (mtDNA) can be applied as a useful marker in forensic casework due to its maternal inheritance, high copy number, and strong persistence, even in degraded samples. Therefore, the present study aimed to investigate the mtDNA’s hypervariable region 1 (HVR-I) in individuals from different Iranian ethnic groups/subpopulations. For this purpose, haplogroup frequencies of mtDNA and the population genetic parameters in the HVR-I region of mtDNA were evaluated in 357 individuals from different ethnic groups (Fars, Lur, Arab, Kurd, Azeri, Gilak, Bandari, Jewish, Armani) and a group of patients with glucose-6-phosphate dehydrogenase (G6PD) disease using population genetics tools. For this purpose, haplotype and nucleotide diversity were determined using the DNASP 5.10 software. In addition, allelic variants and elucidating subpopulation haplogroups were investigated with the help of PhyloTree and HaploGrep 2 software, respectively. Overall, this study identified 316 different haplotypes. The Fars group had the highest number of samples and haplotypes, with 114 samples and 97 haplotypes, respectively. In addition, the lowest number of samples and haplotypes belonged to the Baluch group, with 13 samples and 11 haplotypes, respectively. In total, 139 unique haplogroups were detected in the HVR-I region of mtDNA in the Iranian population, where H2a2a1, J1b, and H2 were the most frequent across all subpopulations. The detected haplogroups belonged to 20 macro-haplogroups. The majority of known haplogroups were of European origin. Pairwise comparisons between Iranian subpopulations indicated that 23, 17, 17, and 21 of the comparisons had very high, high, medium, and low levels of genetic differentiation. The maximum genetic differentiations were observed between the G6PD and other ethnic groups. In general, this study indicated great genetic diversity in Iranian subpopulations. Further surveys can evaluate the relationship between this genetic diversity and important traits. | ||
کلیدواژهها | ||
Genetic variation؛ Haplogroups؛ Mitochondrial DNA | ||
مراجع | ||
Akbari, M. T., Izadi, P., Izadyar, M., Kyriacou, K., & Kleanthous, M. (2008). Molecular basis of thalassemia intermedia in Iran. Hemoglobin, 32(5), 462-470. https://doi.org/10.1080/03630260802341851
Amjadi, M., Hayatmehr, Z., Egyed, B., Tavallaei, M., & Szécsényi‐Nagy, A. (2024). A comprehensive review of HVS‐I mitochondrial DNA variation of 19 Iranian populations. Annals of Human Genetics, 88(3), 259-277. https://doi.org/10.1111/ahg.12544
Arjmand, S., Khaledi, N., Fayazmilani, R., Lotfi, A. S., & Tavana, H. (2017). Association of mitochondrial DNA haplogroups with elite athletic status in Iranian population. Meta Gene, 11, 81-84. https://doi.org/10.1016/j.mgene.2016.11.009
Bahmanimehr, A., Eskandari, G., & Nikmanesh, F. (2015). The congruence between matrilineal genetic (mtDNA) and geographic diversity of Iranians and the territorial populations. Iranian Journal of Basic Medical Sciences, 18(1), 30-37. https://doi.org/10.22038/IJBMS.2015.3885
Bai, R., Cui, H., Devaney, J. M., Allis, K. M., Balog, A. M., Liu, X., ... & Suchy, S. F. (2021). Interference of nuclear mitochondrial DNA segments in mitochondrial DNA testing resembles biparental transmission of mitochondrial DNA in humans. Genetics in Medicine, 23(8), 1514-1521. https://doi.org/10.1038/s41436-021-01166-1
Behar, D. M., Van Oven, M., Rosset, S., Metspalu, M., Loogväli, E. L., Silva, N. M., ... & Villems, R. (2012). A "Copernican" reassessment of the human mitochondrial DNA tree from its root. The American Journal of Human Genetics, 90(4), 675-684. https://doi.org/10.1016/j.ajhg.2012.03.002
Bircan, R., Gözü, H. I., Ulu, E., Sarıkaya, Ş., Gül, A. E., Şirin, D. Y., Özçelik, S., & Aral, C. (2019). The mitochondrial DNA control region might have useful diagnostic and prognostic biomarkers for thyroid tumors. Experimental and Clinical Endocrinology & Diabetes, 127(07), 423-436. https://doi.org/10.1055/a-0869-7355
Boulet, L., Karpati, G., & Shoubridge, E. A. (1992). Distribution and threshold expression of the tRNA (Lys) mutation in skeletal muscle of patients with myoclonic epilepsy and ragged-red fibers (MERRF). American Journal of Human Genetics, 51(6), 1187. https://www.cell.com/ajhg/home
Catheline, S. E., Kaiser, E., & Eliseev, R. A. (2023). Mitochondrial genetics and function as determinants of bone phenotype and aging. Current Osteoporosis Reports, 21(5), 540-551. https://doi.org/10.1007/s11914-023-00816-4
Derenko, M., Malyarchuk, B., Bahmanimehr, A., Denisova, G., Perkova, M., Farjadian, S., & Yepiskoposyan, L. (2013). Complete mitochondrial DNA diversity in Iranians. PloS One, 8(11), e80673. https://doi.org/10.1371/journal.pone.0080673
Engebretsen, B. J., Irwin, D., Valdez, M. E., O'Donovan, M. K., Tucker, A., & Van Patot, M. T. (2007). Acute hypobaric hypoxia (5486 m) induces greater pulmonary HIF-1 activation in hilltop compared to madison rats. High Altitude Medicine & Biology, 8(4), 312-321. https://doi.org/10.1089/ham.2007.1031
Estopinal, C. B., Chocron, I. M., Parks, M. B., Wade, E. A., Roberson, R. M., Burgess, L. G., ... & Samuels, D. C. (2014). Mitochondrial haplogroups are associated with severity of diabetic retinopathy. Investigative Ophthalmology and Visual Science, 55(9), 5589-5595. https://doi.org/10.1167/iovs.14-15149
Farjadian, S., Sazzini, M., Tofanelli, S., Castrì, L., Taglioli, L., Pettener, D., ... & Luiselli, D. (2011). Discordant patterns of mtDNA and ethno-linguistic variation in 14 Iranian Ethnic groups. Human Heredity, 72(2), 73-84. https://doi.org/10.1159/000330166
Gao, F., Schon, K. R., Vandrovcova, J., Wilson, L., Hanna, M. G., ICGNMD Consortium, ... & Horvath, R. (2024). Mitochondrial DNA disorders in neuromuscular diseases in diverse populations. Annals of Clinical and Translational Neurology. https://doi.org/10.1002/acn3.52141
Gounder Palanichamy, M., Sun, C., Agrawal, S., Bandelt, H. J., Kong, Q. P., Khan, F., ... & Zhang, Y. P. (2004). Phylogeny of mitochondrial DNA macrohaplogroup N in India, based on complete sequencing: implications for the peopling of South Asia. The American Journal of Human Genetics, 75(6), 966-978. https://doi.org/10.1086/425871
Govindaraju, D. R. (1989). Variation in gene flow levels among predominantly self-pollinated plants. Journal of Evolutionary Biology, 2(3), 173-181. https://doi.org/10.1046/j.1420-9101.1989.2030173.x
Hall, T. A. (1999, January). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic Acids Symposium Series, 41, 95-98. https://doi.org/10.1002/acn3.52141
Hasegawa, M., Di Rienzo, A., Kocher, T. D., & Wilson, A. C. (1993). Toward a more accurate time scale for the human mitochondrial DNA tree. Journal of Molecular Evolution, 37, 347-354. https://doi.org/10.1007/BF00178865
Ienco, E. C., Simoncini, C., Orsucci, D., Petrucci, L., Filosto, M., Mancuso, M., & Siciliano, G. (2011). May "Mitochondrial Eve" and mitochondrial haplogroups play a role in neurodegeneration and Alzheimer′ s disease? International Journal of Alzheimer's Disease, 2011(1), 709061. https://doi.org/10.4061/2011/709061
Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451-1452. https://doi.org/10.1093/bioinformatics/btp187
Liu, E., Kaidonis, G., Gillies, M. C., Abhary, S., Essex, R. W., Chang, J. H., ... & Craig, J. E. (2019). Mitochondrial haplogroups are not associated with diabetic retinopathy in a large Australian and British Caucasian sample. Scientific Reports, 9(1), 612. https://doi.org/10.1038/s41598-018-37388-8
Maji, S., Krithika, S., & Vasulu, T. S. (2008). Distribution of mitochondrial DNA macrohaplogroup N in India with special reference to haplogroup R and its sub-haplogroup U. International Journal of Human Genetics, 8(1-2), 85-96. https://doi.org/10.1080/09723757.2008.11886022
Merheb, M., Matar, R., Hodeify, R., Siddiqui, S. S., Vazhappilly, C. G., Marton, J., Azharuddin, S., & Al Zouabi, H. (2019). Mitochondrial DNA, a powerful tool to decipher ancient human civilization from domestication to music, and to uncover historical murder cases. Cells, 8(5), 433. https://doi.org/10.3390/cells8050433
Metspalu, M., Kivisild, T., Metspalu, E., Parik, J., Hudjashov, G., Kaldma, K., ... & Villems, R. (2004). Most of the extant mtDNA boundaries in south and southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans. BMC Genetics, 5, 1-25. https://doi.org/10.1186/1471-2156-5-26
Najmabadi, H., Karimi-Nejad, R., Sahebjam, S., Pourfarzad, F., Teimourian, S., Sahebjam, F., Amirizadeh, N., & Karimi-Nejad, M. H. (2001). The β-thalassemia mutation spectrum in the Iranian population. Hemoglobin, 25(3), 285-296. https://doi.org/10.1081/HEM-100105221
Olivieri, A., Achilli, A., Pala, M., Battaglia, V., Fornarino, S., Al-Zahery, N., ... & Torroni, A. (2006). The mtDNA legacy of the Levantine early Upper Palaeolithic in Africa. Science, 314(5806), 1767-1770. https://doi.org/10.1126/science.1135566
Pereira, L., Richards, M., Goios, A., Alonso, A., Albarrán, C., Garcia, O., ... & Amorim, A. (2005). High-resolution mtDNA evidence for the late-glacial resettlement of Europe from an Iberian refugium. Genome Research, 15(1), 19-24. https://doi.org/10.1101/gr.3182305
Peverelli, L., Catania, A., Marchet, S., Ciasca, P., Cammarata, G., Melzi, L., ... & Lamperti, C. (2021). Leber's hereditary optic neuropathy: a report on novel mtDNA pathogenic variants. Frontiers in Neurology, 12, 657317. https://doi.org/10.3389/fneur.2021.657317
Qiao, C., Wei, T., Hu, B., Peng, C., Qiu, X., Wei, L., & Yan, M. (2015). Two families with Leber's hereditary optic neuropathy carrying G11778A and T14502C mutations with haplogroup H2a2a1 in mitochondrial DNA. Molecular Medicine Reports, 12(2), 3067-3072. https://doi.org/10.3892/mmr.2015.3714
Quintana-Murci, L., Chaix, R., Wells, R. S., Behar, D. M., Sayar, H., Scozzari, R., ... & McElreavey, K. (2004). Where west meets east: the complex mtDNA landscape of the southwest and Central Asian corridor. The American Journal of Human Genetics, 74(5), 827-845. https://doi.org/10.1086/383236
Rezaee, A. R., Banoei, M. M., Khalili, E., & Houshmand, M. (2012). Beta‐thalassemia in Iran: new insight into the role of genetic admixture and migration. The Scientific World Journal, 1, 635183. https://doi.org/10.1100/2012/635183
Richards, M., Macaulay, V., Hickey, E., Vega, E., Sykes, B., Guida, V., ... & Bandelt, H. J. (2000). Tracing European founder lineages in the Near Eastern mtDNA pool. The American Journal of Human Genetics, 67(5), 1251-1276. https://doi.org/10.1016/S0002-9297(07)62954-1
Roostalu, U., Kutuev, I., Loogväli, E. L., Metspalu, E., Tambets, K., Reidla, M., ... & Villems, R. (2007). Origin and expansion of haplogroup H, the dominant human mitochondrial DNA lineage in West Eurasia: the Near Eastern and Caucasian perspective. Molecular Biology and Evolution, 24(2), 436-448. https://doi.org/10.1093/molbev/msl173
Rosa, A., Brehm, A., Kivisild, T., Metspalu, E., & Villems, R. (2004). MtDNA profile of West Africa Guineans: towards a better understanding of the Senegambia region. Annals of Human Genetics. Annals of Human Genetics, 68(4), 340-352. https://doi.org/10.1046/j.1529-8817.2004.00100.x
Samehsalari, S., Mohsenpour, K., & Chandrasekar, A. (2023). Identification of South Indian muslims by sequencing the control region of mitochondrial DNA. Journal of Genetic Resources, 9(2), 215-221. https://doi.org/10.22080/jgr.2023.25572.1361
Sarhangi, N., Khatami, F., Keshtkar, A., Heshmat, R., Atlasi, R., & Mohammadamoli, M. (2017). The role of mitochondrial DNA (mtDNA) in the development of diabetic retinopathy (DR): A systematic review. Med Hypothesis Discov Innov Ophthalmol, 6(2), 30-38. https://mehdijournal.com/index.php/mehdiophthalmol
Sena-dos-Santos, C., Moura, D. D., Epifane-de-Assunção, M. C., Ribeiro-dos-Santos, Â., & Santos-Lobato, B. L. (2024). Mitochondrial DNA variants, haplogroups and risk of Parkinson's disease: a systematic review and meta-analysis. Parkinsonism & Related Disorders, 107044. https://doi.org/10.1016/j.parkreldis.2024.107044
Sharma, S., Singh, Y., Sandhir, R., Singh, S., Ganju, L., Kumar, B., & Varshney, R. (2021). Mitochondrial DNA mutations contribute to high altitude pulmonary edema via increased oxidative stress and metabolic reprogramming during hypobaric hypoxia. Biochimica et Biophysica Acta Bioenergetics, 1862(8), 148431. https://doi.org/10.1016/j.bbabio.2021.148431
Shasttiri, A., Moridi, M., Safari, A., Raza, S. H. A., Ghaderi-Zefrehei, M., Houshmand, M., Oryan, A., Sanati, M.H., Smith, J. & Amjadi, M. (2022). Following the Trace of HVS II Mitochondrial region within the nine Iranian ethnic groups based on genetic population analysis. Biochemical Genetics, 1-20. https://doi.org/10.1007/s10528-021-10141-z
Stewart, J. B., & Chinnery, P. F. (2021). Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nature Reviews Genetics, 22(2), 106-118. https://doi.org/10.1038/s41576-020-00284-x
Terreros, M. C., Rowold, D. J., Mirabal, S., & Herrera, R. J. (2011). Mitochondrial DNA and Y-chromosomal stratification in Iran: relationship between Iran and the Arabian Peninsula. Journal of Human Genetics, 56(3), 235-246. https://doi.org/10.1038/jhg.2010.174
Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. https://doi.org/10.1093/nar/22.22.4673
Van Oven, M. (2015). PhyloTree Build 17: Growing the human mitochondrial DNA tree. Forensic Science International: Genetics Supplement Series, 5, e392-e394. https://doi.org/10.1016/j.fsigss.2015.09.155
Vanichanukulyakit, J., Khacha-Ananda, S., Monum, T., Mahawong, P., Moophayak, K., Penkhrue, W., ... & Thongsahuan, S. (2023). The analysis of genetic polymorphism on Mitochondrial hypervariable Region III in Thai population. Genes, 14(3), 682. https://doi.org/10.3390/genes14030682
Wallace, D. C. (2016). Mitochondrial DNA in evolution and disease. Nature, 535(7613), 498-500. https://doi.org/10.1038/nature18902
Weissensteiner, H., Pacher, D., Kloss-Brandstätter, A., Forer, L., Specht, G., Bandelt, H. J., Kronenberg, F., Salas, A., & Schönherr, S. (2016). HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Research, 44(W1), W58-W63. https://doi.org/10.1093/nar/gkw233
Yu-Wai-Man, P., Griffiths, P. G., & Chinnery, P. F. (2011). Mitochondrial optic neuropathies–disease mechanisms and therapeutic strategies. Progress in Retinal and Eye Research, 30(2), 81-114. https://doi.org/10.1016/j.preteyeres.2010.11.002 | ||
آمار تعداد مشاهده مقاله: 46 تعداد دریافت فایل اصل مقاله: 109 |