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Abstract. If we have a commutative ring R and it is identified
as 1 ̸= 0 there is an R-module M , GR(M) will denote the Scalar
product graph of M . Vertices of GR(M) are elements of M , and
a, b in M are adjoining if a = rb or b = ra for some r ∈ R. In
this paper, we investigate topological indices of the Scalar product
graphs on some modules.
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1. Introduction

Throughout the paper, we only consider simple connected graphs. Let
G be a graph with sets V (G) and E(G) as vertex and edge set. For two
arbitrary vertices, a and v of G, the distance between a and b, denoted
by d(u, v), is the length of the shortest path between them. For a graph
G, the degree of a vertex v, denoted by deg(v), is the number of edges
incident to v. Any function on a graph that doesn’t have a relation to
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the labeling of its vertices is a graph invariant. Those graph invariants
based on distances are applicable in chemistry. The topological index
is a graph invariant. The Wiener index is the first topological index
defined by chemist Wiener [17].
Another topological index is the Szeged index, denoted by Sz(G), in-
troduced by Ivan Gutman[6]. Let e = uv be an edge and nu(e | G),
nv(e | G) are the size of the set of vertices which be closer to u and
to v, respectively. Vertices with equal distance from u and v are not
considered. The Szeged index of the G is defined as:

Sz(G) =
∑

e=uv∈E(G)

nu(e | G)nv(e | G) (1.1)

One of important indices in graph is PIv(G). For every e ∈ E(G), Let
the sum of [meu(e | G) +mev(e | G)], where meu(e | G), mev(e | G) are
the size of the set of vertices which be closer to u than v and, v than
u, respectively. This index is named vertex PI index of G. We suppose,
there are two separate graphs as G and H. One of the operation between
the two graphs is G+H. This is a graph with V (G+H) = V (G)∪V (H)
and E(G+H) = E(G)∪E(H)∪ {xy : x ∈ V (G), y ∈ V (H)} as vertices
and edge sets. This operation is named the join of G and H.
Afkhami et al.[1] introduced one the most essential graphs over the ring,
the cozero-divisor graph of ring R, denoted by Γ′(R). Let W (R) is the
set of all non-unit elements of R and W (R)∗ = W (R)\{0}. The vertices
of Γ′(R) are W (R)∗ and edges of this graph are {e = ab : a /∈ Rbandb /∈
Ra}.
Nouri-Jouybari et al.[11], defined the Scalar product graph of modules,
denoted by GR(M). Vertices of this graph is M , and a, b in M are
adjoining if a = rb or b = ra for some r ∈ R. They state some properties
of these graphs. For more information about graphs see: [4], [15], [16].
In [12], [13] authors computed Wiener and first Zagreb indices of the
scalar product graph of Z2p,Z3p,Z5p.
In the next section, we express some properties of scalar product graphs
of some Z-modules by the join of two graphs. In section 3, we see another
definition of Szeged and PI indices of graphs and present some formulas
for computing Szeged and PI indices of the scalar product graphs of
some modules.

2. Scalar product graph of modules

In this section, first, we see some primary properties of the scalar
product graphs on some modules, then express computing topological
indices of these graphs.
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Figure 1. Scalar-product graph of Z-modules Z10

Definition 2.1 ([11]). For a commutative ring R with identity 1 ̸= 0
and an R-module M , let GR(M) denote the Scalar product graph of M .
GR(M) is a graph with vertices in M and a, b in M are adjoining if
a = rb or b = ra for some r ∈ R. See Fig1.

Remark 2.2. If M be an R-module, then for GR(M), We have, a, b ∈ M
are two adjacent vertices if and only if Ra ⊆ Rb or Rb ⊆ Ra.

Remark 2.3. As for definition of a cozero-divisor graph over modules,
we have:
(1) Vertices WR(M)∗ of GR(M) make the complement of a cozero-
divisors graph of M .
(2) We have GR(M) = G1 + G2, That is, G1 is a complete graph and
G2 is the complement of a cozero-divisor graph of M .

Definition 2.4. [17] The Wiener index of a graph G is defined as:

W (G) =
1

2

∑
u,v∈V (G)

d(u, v) (2.1)

respectively.

Theorem 2.5. [12] Suppose p ≥ 3 is a prime number. Then we have
W (GZ(Z2p)) = 2p2 − 1.

Theorem 2.6. [12] Suppose p ≥ 5 is a prime number. Then we have
W (GZ(Z3p)) =

9
2p

2 + 1
2p− 2.

Theorem 2.7. [12] Suppose p is a prime number. Then we have
W (GZ(Z5p)) =

25
2 p

2 + 3
2p− 4.

Definition 2.8. [5] The first and second Zagreb indices of a graph G
are defined as:

M1(G) =
∑

v∈V (G)

deg(v)2, (2.2)
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M2(G) =
∑

uv∈E(G)

deg(v)deg(v) (2.3)

respectively.

Theorem 2.9. [13] Suppose that p ≥ 3 is a prime number, and G is
the Scalar product graph of Z-modules Z2p. Then M1(G) = 8p3−15p2+
13p− 4.

Theorem 2.10. [13] Suppose that p ≥ 5 is a prime number, and G
is the Scalar product graph of Z-modules Z3p. Then M1(G) = 27p3 −
40p2 + 25p− 4.

Theorem 2.11. [14] Suppose that p ≥ 3 is a prime number, and G is
the Scalar product graph of Z-modules Z2p. Then M2(G) = 8p4−22p3+
55
2 p

2 − 33
2 p+ 4.

Definition 2.12. [7] The Harary index of a graph G is defined as:

H(G) =
∑

vi,vj∈V (G),i ̸=j

1

d(vi, vj)
, (2.4)

Theorem 2.13. [14] Suppose that p ≥ 3 is a prime number, and G is
the Scalar product graph of Z-modules Z2p. Then H(G) = 2p2 − 3

2p+
1
2 .

Theorem 2.14. [14] Suppose that p ≥ 5 is a prime number, and G is
the Scalar product graph of Z-modules Z3p. Then H(G) = 9

2p
2 − 5

2p+1.

Theorem 2.15. [14] Suppose that p ≥ 7 is a prime number, and G is
the Scalar product graph of Z-modules Z5p. Then H(G) = 25

2 p
2− 9

2p+2.

3. Szeged and vertex PI indices of graphs

In this section, first, we see the definition of Szeged and vertex PI
indices of graphs, then computing these indices for the Scalar product
of some Z-modules by joining two graphs.
Let e = uv ∈ E(G) and define the partition {Nu(e), Nv(e), N0(e)} of the
vertices of G with respect to e as follows:

Nu = {w ∈ V : d(u,w) < d(v, w)} (3.1)
Nv = {w ∈ V : d(v, w) < d(u,w)} (3.2)
N0 = {w ∈ V : d(u,w) = d(v, w)} (3.3)

We denote nu(e), nv(e) and n0(e) for size of Nu(e), Nv(e) and N0(e),
respectively.
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Definition 3.1. [10] There is a definition of Szeged and vertex PI index
which is as follows:

Sz(G) =
∑

e=uv∈E(G)

nu(e | G)nv(e | G) (3.4)

PIv(G) =
∑

e=uv∈E(G)

nu(e | G) + nv(e | G) (3.5)

Theorem 3.2. [10] Let G1, . . . , Gn be graphs. Then, we have:

Sz(G1 + . . .+Gn) =
1

2

n∑
i=1

Sz(Gi +Gi) +
1

2
(

n∑
i=1

| Vi |2 −2 | Ei |)2

(3.6)

−
n∑

i=1

(| Vi |2 −2 | Ei |)2 (3.7)

Corollary 3.3. Let G1, G2 be two graphs with Vi = |V (Gi)|, Ei =
|E(Gi)|, i = 1, 2. Then:

Sz(G1 +G2) =
1

2
[Sz(G1 +G1) + Sz(G2 +G2)]

+
1

2
[| V1 |2 −2 | E1 |) + (| V2 |2 −2 | E2 |)]2

− 1

2
[(| V1 |2 −2 | E1 |)2 + (| V2 |2 −2 | E2 |)2]

Theorem 3.4. Suppose that p ≥ 3 is a prime number, and G is the
Scalar product graph of Z-modules Z2p. Then Sz(G) = 4p2 − 4p+ 1.

Proof. By remark 2.3, we have GZ(Z2p) = Kp + K1,p−1. Due to the
above corollary 3.3, we have:

Sz(GZ(Z2p)) = Sz(Kp +K1,p−1)

=
1

2
[Sz(Kp +Kp) + Sz(K1,p−1 +K1,p−1)]

+
1

2
[| V (Kp) |2 −2 | E(Kp) |) + (| V (K1,p−1) |2

− 2 | E(K1,p−1) |)]2 −
1

2
[(| V (Kp) |2 −2 | E(Kp) |)2

+ (| V (K1,p−1) |2 −2 | E(K1,p−1) |)2]

Therefore, we have:
Sz(GZ(Z2p)) = 4p2 − 4p+ 1. □
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Theorem 3.5. [10] Let G1, . . . , Gn be graphs. Then, we have:

PIv(G1 + . . .+Gn) = (

n∑
i=1

| Vi |)(
n∑

i=1

(| Vi |2 −2 | Ei |))

− 2(

n∑
i=1

| Vi | (| Vi |2 −2 | Ei |)) +
1

2

n∑
i=1

PIv(2Gi)

Corollary 3.6. Let G1, G2 be two graphs with Vi = |V (Gi)|, Ei =
|E(Gi)|, i = 1, 2. Then:
PIv(G1 +G2) =(| V1 | + | V2 |)[(| V1 |2 −2 | E1 |) + (| V2 |2 −2 | E2 |)]

− 2[| V1 | (| V1 |2 −2 | E1 |)+ | V2 | (| V2 |2 −2 | E2 |)]

+
1

2
[PIv(2G1) + PIv(2G2)]

Theorem 3.7. Suppose that p ≥ 3 is a prime number, and G is the
scalar product graph of Z-modules Z2p. Then Sz(G) = 6p2 − 6p+ 2.

Proof. By remark 2.3, we have GZ(Z2p) = Kp + K1,p−1. Due to the
above corollary 3.6, we have:
PIv(GZ(Z2p)) = Sz(Kp +K1,p−1)

= (|V (Kp)|+
∣∣V (K1,p−1)

∣∣)[(|V (Kp)|2 − 2 |E(Kp)|)

+ (
∣∣V (K1,p−1)

∣∣2 − 2
∣∣E(K1,p−1)

∣∣)]− 2[|V (Kp)| (|V (Kp)|2

− 2 |E(Kp)|) +
∣∣V (K1,p−1)

∣∣ (∣∣V (K1,p−1)
∣∣2 − 2

∣∣E(K1,p−1)
∣∣)]

+
1

2
[PIv(2Kp) + PIv(2K1,p−1)]

On the other hand, we have PIv(Kn) = n(n− 1), therefore, we have:
PIv(GZ(Z2p)) = 6p2 − 6p+ 2. □

4. Conclusion

According to the new definition of a type of graph on modules, other
states of this graph can be considered for the rest of the modules other
than Z-modules and topological indices can be measured on it. New
formulas are available for other topological indices.
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