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Abstract. In theory applications of second order integro-differential
equations, it is crucial to investigate qualitative features of solutions
such as stability, boundedness, and etc. There is an extensive litera-
ture regarding these qualitative behaviors of solutions of second or-
der ordinary differential equations. These qualitative properties of
solutions of second order ordinary differential equations have been
extensively studied in the literature. Despite this case, the litera-
ture on these qualitative aspects of second-order integro-differential
equations is somewhat limited. In this paper, we obtained some
new criteria for the stability and boundedness of solutions to a cer-
tain second order nonlinear integro-differential equation (IDE). By
defining and then using a suitable Lyapunov function (LF), we are
able to establish the asymptotic stability and boundedness of solu-
tions of that IDE. In particular cases of the IDE, two examples on
the stability and boundedness of solutions are given. The results
of this study extend and improve some recent results of the liter-
ature and have new contributions to the qualitative theory of IDEs.
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1. Introduction

As we know from the pertinent literature, ordinary differential equa-
tions (ODEs) of second order have a wide range of real-world applica-
tions. For some applications, see, for examples the books of Ahmad
and Rama Mohana Rao [4], Bellman [6], Burton [9], Reissig et al. [16],
Yoshizawa [24]. Indeed, there is an extensive literature on the qualitative
behaviors called stability, boundedness, convergence, etc. of solutions
of ordinary differential equations of second order, see, for instance, the
papers of Adams et al. [1], Adeyanju ([2],[3]), Athanassov [5], Bihari [8],
Burton and Grimmer [10], Chang [11], Gözen [12], Graef and Spikes [13],
Hatvani[14], Lalli [15], Sugie and Amano [17], Tunç ([18] [19]), Tunç and
Tunç ([20],[21]), Wong [22], Yang [23], and Zarghamee and Mehri [25].

We will now summarize briefly a few works on the stability, bound-
edness, etc. of certain ODEs of second order.

In 1969, Lalli [15] discussed stability and boundedness of solutions
of the following ODE of second order for the homogeneous and non-
homogenous cases, respectively:(

r(t)u′
)′
+ a(t)f(u)g(u′) = q(t).

Later, Zarghamee and Mehri [25] gave some results on the stability and
boundedness of solutions to a class of second order differential equation
of the form:

d

dt

(
r(t)u′

)
+ a(t)f(u)g(u′) + b(t)h(u)m(u′) = 0.

In a recent paper, Adams et al. [1] derived some sufficient criteria for
the stability and boundedness of solutions to the below second order
nonlinear differential equation when p(t, x, x′) = 0 and p(t, x, x′) ̸= 0,
respectively:

x′′ + b(t)f(x, x′) + c(t)g(x)h(x′) = p(t, x, x′).

In Adams et al. [1] , a suitable Lyapunov function is used as a basic tool
to prove the results therein.

In this paper, inspired by the aforementioned works, especially by the
results of Adams et al. [1] and that can be seen in the references of this
paper, and in the database of the relevant literature, we will dealt with
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second order nonlinear IDE as follows:
x′′ + a(t)f(t, x, x′) + b(t)g(x)h(x′) + c(t)g1(x

′) + d(t)g2(x)

=

t∫
0

K(t, s)x′(s)ds+ p(t, x, x′), (1.1)

where a, b, c, d ∈ C (R+, (0,∞)), R+ = [0,∞), f ∈ C
(
R+ ×R2, R

)
,

f(t, x, 0) = 0, g, g1, g2, h ∈ C (R,R), g(0) = g1(0) = g2(0) = 0, p ∈
C
(
R+ ×R2, R

)
, and K ∈ C (R+ ×R+, R). The aim of this study is to

investigate the stability and boundedness of solutions to the IDE (1.1)
for the cases p(t, x, x′) = 0 and p(t, x, x′) ̸= 0, respectively. The basic
technique in the proofs will be a suitable new Lyapunov function to
prove the new results of this study. Hence, we will improve and extend
the recent results of Adams et al. [1] and do new contributions to some
results of the above sources.

2. Preliminaries

We will have an occasion to use the following well-known lemma due
to Bellman (see [Ahmad and Rama Mohana Rao [4],see also Bellman
[6]), which is also known as Gronwall’s inequality.

Lemma 2.1 (Gronwall-Reid Bellman inequality). Let c be a nonnegative
constant and let u and v be nonnegative continuous functions on some
interval t0 ≤ t ≤ t0 + a satisfying

u(t) ≤ c+

∫ t

t0

u(s)v(s)ds, t ∈ [t0, t0 + a].

Then, the inequality

u(t) ≤ cexp[

∫ t

t0

v(s)ds], t ∈ [t0 + t0 + a],

holds.

We will now consider the differential system as follows:
X ′ = F (t,X), (2.1)

where t ∈ R+, X ∈ Rn, F ∈ C (R+ ×Rn, Rn) and F (t, 0) = 0.

Theorem 2.2 (Yoshizawa [24]). Assume that there exists a function
V (t,X) defined for t ≥ 0, |X| < δ(δ is a positive constant) continuous
with the following properties:

(i) V (t, 0) ≡ 0;
(ii) V (t,X) ≥ a(|X|), where a(r) is continuous and monotonically

increasing, a(0) = 0;
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(iii) V ′(t,X) ≤ −c(|X|), where c(r) is continuous on [0, δ] and pos-
itive, and if F (t,X) is bounded, then zero solution of Eq. (2.1)
is asymptotically stable.

3. Main results

Let x′ = y. Subsequently, we transform the IDE (1.1) to the equiva-
lent system as follows:

x′ = y,

y′ = −a(t)f(t, x, y)− b(t)g(x)h(y)− c(t)g1(y)

− d(t)g2(x) +

t∫
0

K(t, s)y(s)ds. (3.1)

Basic Assumptions
The following are the basic assumptions to formulate the qualitative

results for the IDE (1.1)
(C1) Let a0, b0, c0 and d0 be positive constants such that a(t) ≥ a0 ≥

0, b(t) ≥ b0, c(t) ≥ c0, d(t) ≥ d0, d′(t) ≤ 0 and c′(t) ≤ 0, t ∈ R+,
g(x) > 0, (x ̸= 0), x ∈ R, g(0) = 0, where a, b, d ∈ C(R+, R+),
g ∈ C(R,R), c ∈ C1(R+, R+);

(C2)

f ∈ C(R+ ×R2, R), g2 ∈ C(R,R), h, g1 ∈ C(R,R);

(C3)
f(t, x, y)

y
≥ η, (y ̸= 0), η > 0, η ∈ R,

f(t, x, 0) = 0, (t, x, y) ∈ R+ ×R2, g1(0) = g2(0) = 0

(C4)
g1(y)

y
≥ α, (y ̸= 0),

g2(x)

x
≥ γ, (x ̸= 0),

α, γ > 0, α, γ ∈ R, x, y ∈ R;

(C5)
h(y)

y
≥ β, (y ̸= 0), h(0) = 0, β > 0, β ∈ R, y ∈ R;

(C6)
t∫

0

|K(u, t)| du ≤ K0,

t∫
0

|K(t, s)| ds ≤ K1,K0, K1 > 0, t ∈ R+.
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(C7)

−1

2
K0 + a(t)n+ c(t)α− 1

2
K1 + b(t)βg(x) ≥ δ, δ > 0.

First, we establish the stability result of this study when p(t, x, x′) =
0.

Theorem 3.1. In addition to the conditions (C1)-(C6), we assume that
there exists a positive constant ξ such that lim c(t)

t→∞
= ξ. Then, the zero

solution of the system of IDEs (3.1) is asymptotically stable in the sense
of Lyapunov.

Proof. We define the Lyapunov function:

V (t, x, y) = d(t)

x∫
0

g2(s)ds+
1

2
y2 +

1

2

t∫
0

∞∫
t

|K(u, s)| y2(s)duds (3.2)

In view of the conditions (C1), (C4) and (C6) we get

V (t, x, y) ≥ 1

2
d0γx

2 +
1

2
y2

≥ A1(x
2 + y2),

where A1 = min
{
1
2d0γ,

1
2

}
.

Let V ′ = d
dtV (t, x, y). By differentiating the Lyapunov function (3.2)

with respect to t along the system of IDEs (3.1) we have :

V ′ =d′(t)

x∫
0

g2(s)ds+ d(t)x′g2(x) +
1

2

∞∫
t

|K(u, t)| y2(t)du

− 1

2

t∫
0

|K(t, s)| y2(s)ds+ yy′

=d′(t)

x∫
0

g2(s)ds+ d(t)yg2(x) +
1

2

∞∫
t

|K(u, t)| y2(t)du

− 1

2

t∫
0

|K(t, s)| y2(s)ds− a(t)yf(t, x, y)

− b(t)g(x)yh(y)− c(t)yg1(y)

− d(t)yg2(x) + y

t∫
0

K(t, s)y(s)ds.
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Using the conditions (C1)-(C6) and the inequality 0 ≤ (x− y)2, we have

V ′ ≤1

2
d′(t)γx2 +

1

2
y2(t)

∞∫
0

|K(u, t)| du− 1

2

t∫
0

∣∣K(t, s)y2(s)ds
∣∣

− a(t)ηy2 − b(t)g(x)βy2 − c(t)αy2 + y

t∫
0

K(t, s)y(s)ds

≤1

2
d′(t)γx2 − b(t)g(x)βy2 +

1

2
y2K0 − a(t)ηy2 − c(t)αy2 +

1

2
y2K1

≤1

2
d′(t)γx2 + [

1

2
K0 − a(t)η − c(t)α+

1

2
K1 − b(t)βg(x)]y2

≤1

2
d′(t)γx2 − δy2

≤0.

Thus, all the conditions of Theorem 2.2 hold. Thus, the zero solution
of the system of IDEs (3.1) is asymptotically stable. Thereby, this com-
pletes the proof of Theorem 3.1.

Second, we will give the boundedness result of this study when p(t, x, x′) ̸=
0. □

Theorem 3.2. Let us assume that the conditions of Theorem 3.1 hold
except f(t, x, 0) = 0, h(0) = 0 and g1(0) = g2(0) = 0. In additions, we
also assume that

|p(t, x, y)| ≤ e(t) ≥ 0,

∞∫
0

e(s)ds < ∞,

where e(t) ∈ L1(0,∞) and L1(0,∞) is a space of integrable Lebesque
functions. Then , there exists a positive constant A3 such that all solu-
tions (x(t), y(t)) the system of IDEs (3.1) satisfy

|x(t)| ≤ A3, |y(t)| ≤ A3

for all t ∈ R+, R+ = [0,∞).

Proof. To prove Theorem 3.2, we use Lyapunov function V (t, x, y) which
is given by the Eq. (3.2). For the case p(t, x, y) ̸= 0, and applying the
assumption of Theorem 3.1, we can revise the result of Theorem 3.1 as
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follows:
d

dt
V (t, x, y) ≤1

2
d′(t)γx2 − δy2 + yp(t, x, x′)

≤1

2
d′(t)γx2 − δy2 + ye(t)

≤1

2
d′(t)γx2 − δy2 + |y| e(t).

Using the in quality |y| < 1+ y2 and the condition |p(t, x, y)| ≤ e(t), we
get

d

dt
V (t, x, y) ≤1

2
d′(t)γx2 − δy2 + (1 + y2)e(t)

≤1

2
d′(t)γx2 − δy2 + (1 +A−1

1 V (t, x, y))e(t)

≤(1 +A−1
1 V (t, x, y))e(t)

=e(t) +A−1
1 V (t, x, y)e(t), (3.3)

where y2 ≤ A−1
1 V (t, x, y). Integrating the inequality (3.3) from 0 to t

and using the Gronwall-Bellman lemma, we have
t∫

0

V ′(s, x, y)ds ≤
t∫

0

e(s)ds+

t∫
0

A−1
1 V (s, x, y)e(s)ds

so that

V (t, x, y) ≤V (0, x(0), y(0)) +

t∫
0

e(s)ds+

t∫
0

A−1
1 V (s, x, y)e(s)ds

≤V (0, x(0), y(0)) +

∞∫
0

e(s)ds+

∞∫
0

A−1
1 V (s, x, y)e(s)ds

≤[V (0, x(0), y(0)) +B] exp
(
A1

−1B
)
, (3.4)

where B =
∞∫
0

e(s)ds.

In view of the inequalities

V (t, x, y) ≥ 1

2
d0γx

2 +
1

2
y2

and
V (t, x, y) ≤ [V (0, x(0), y(0)) +B] exp

(
A1

−1B
)
,

we can conclude the boundedness of all solutions of the system of IDEs
(3.1). Thereby, the proof of Theorem 3.2 is now complete.
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We will now present two examples in particular cases of the IDE (1.1)
that satisfy the conditions of Theorem 3.1 and Theorem 3.2 , respec-
tively. □

Example 3.3. . Consider the second order IDE as follows:

x′′ + (1 + t2)x′ex
2+t2 + (1 + e−t2)(1 + |x|)(1 + e−x′

)x′

+ (1 + e−2t)(1 + ex
′
)x′ + (1 + e−t)x =

t∫
0

e−(t+s)x′(s)ds. (3.5)

The equivalent system of IDE (3.5) can be written as follows:

x′ =y,

y′ =− (1 + t2)xyex
2+t2 − (1 + e−t2)(1 + |x|)(1 + e−y)y

− (1 + e−2t)(1 + ey)y − (1 + e−t)x+

t∫
0

e−(t+s)y(s)ds. (3.6)

It is obvious that the system (3.6) satisfies the conditions (C1) and
(C2). We now consider the Lyapunov function given as follows, which
is a particular case of that one given by (3.3):

V (t, x, y) =
1

2
(1 + e−t)x2 +

1

2
y2 +

1

2

∫ t

0

∫ ∞

t
|K(u, s)| y2(s)duds

The differentiating the Lyapunov V ≡ V (t, x, y) along the system (3.6),
we get

V ′ = −1

2
e−tx2 + [−(1 + e−t2)(1 + |x|)− (1 + t2)− (1 + e−2t) + 1]y2.

Thus, there exist a positive constant δ, which is small enough, such that

V ′ ≤ −δ(x2 + y2),

which verifies that the asymptotic stability is now established.

Example 3.4. Consider the second order IDE as follows:

x′′ + (1 + t2)x′ex
2+t2 + (1 + e−t2)(1 + |x|)(1 + e−x′

)x′

+ (1 + e−2t)(1 + ex
′
)x′ + (1 + e−t)x =

t∫
0

e−(t+s)x′(s)ds

+
1

1 + t2 + x4 + x′4
. (3.7)
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The discussions of Example 1 hold for the IDE (3.7) except that for the
term 1

1+t2+x4+x′4 . Additionally, it is seen that

p(t, x, y) =
1

1 + t2 + x4 + y4
.

Hence, regarding to Theorem 3.2, we have that

|p(t, x, y)| = 1

1 + t2 + x4 + y4
≤ 1

1 + t2
= e(t).

Thereby, it follows from the inequality (3.3) that

V ′(t, x, y) ≤ 1

1 + t2
+A−1

1 V (t, x, y)
1

1 + t2
.

In the subsequent, integrating the above inequality from 0 to ∞ and
then applying Gronwall-Bellman lemma, we get

V (t, x, y) ≤ [V (0, x(0), y(0)) +
π

2
]eA

−1
1

π
2 ,

where

B =

∞∫
0

1

1 + s2
ds =

π

2
.

From the last inequality and

V (t, x, y) ≥ 1

2
d0γx

2 +
1

2
y2,

we can conclude the boundedness of solutions of IDE (3.5).
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