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Abstract. In this paper ill-posed linear inverse problems that
arises in many applications is considered. The instability of special
kind of these problems and it’s relation to the kernel, is described.
For finding a stable solution to these problems we need some kind
of regularization that is presented. The results have been applied
for a singular equation
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1. Introduction

The concept of ill-conditioned problem has been first introduced by
Hadamard [1].
Fredholm integral equation of the first kind is a classical example of ill-
posed problem that arises frequently in applied problems. A simple case
of this equation is as follows:∫ 1

0
K(s, t)f(t)dt = g(s). (1.1)

The difficulties with the above integral equation inseparably connected
with the compactness of the operator which is associated with the kernel
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K [2, Chapter 15]. In physical terms, the integration with K in (1.1) has
a ”smoothing” effect on f , in the sense that high-frequency components,
cusps, and edges in f are ”smoothed out” by the integration.

2. Singular value expansion (SVE)

If

||K||2 =

∫ 1

0

∫ 1

0
K(s, t)2dtds

is bounded then, we have [3]:

K(s, t) =
∞∑
i=1

µiui(s)vi(t) (2.1)

ui and vi’s are the singular functions of the K, and µi’s are the singular
values of the kernel K. Some properties of these quantities are as follows:

• (ui, uj) = (vi, vj) = δij ,
• ||K||2 =

∑∞
i=1 µ

2
i ,

• µ1 ≥ µ2 ≥ ... ≥ µn ≥ ...,
• {µ2i , ui} are the eigensolutions of the symmetric kernel

∫ 1
0 K(s, x)K(t, x)dx,

• {µ2i , vi} are the eigensolutions of the symmetric kernel
∫ 1
0 K(x, s)K(x, t)dx,

•
∫ 1
0 K(s, t)vi(t)dt = µiui(s),

The second property with ||K||2 <∞ inquires that µi must decay faster

than i−1/2.
By the above relations we can rewrite the equation (1.1) as :

∞∑
i=1

µi(vi, f)ui(s) =
∞∑
i=1

(ui, g)ui(s), (2.2)

∞∑
i=1

µi(vi, f)ui(s) =
∞∑
i=1

(ui, g)ui(s), (2.3)

so,

f(t) =
∞∑
i=1

(ui, g)

µi
vi(t) (2.4)

3. Computation of the SVE

One practical way to compute the SVE of an integral equation is
to approximate it by SVD (singular value decomposition) of the linear
system of equations, comes from the discretization of the main integral
equation. The SVD reveals all the difficulties associated with the ill-
conditioning of the matrix A.
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Let A ∈ Rn×n be a square matrix, Then the SVD of A is a decomposition
of the form

A = UΣV T =
n∑

i=1

uiσiv
T
i

Where U = (u1, ..., un) ∈ Rn×n, and V = (v1, ..., vn) ∈ Rn×n are ma-
trices with orthonormal columns, UTU = V TV = In. And where the
diagonal matrix Σ = diag(σ1, ..., σn) has nonnegative diagonal elements
appearing in nonincreasing order such that,

σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0.

The numbers σi’s are called the singular values of A, while the vectors
ui and vi’s are the left and right singular vectors of A, respectively.
The classical algorithm for computing the SVD of a dense matrix is due
to Golub, Kahan, and Reinsch [4], [5]. The algorithm consists of two
main stages. In the first stage, A is transformed into upper bidiagonal
form B by means of a finite sequence of alternating left and right House-
holder transformations. In the second, iterative, stage, the shifted QR
algorithm is applied implicitly to the matrix BTB, and consequently B
converges to Σ. The left and right orthogonal transformations, if accu-
mulated, produce the matrices U and V .
Now we will explain the computation of the approximation of SVE by
means of SVD [6]. The algorithm takes the following form. Assume that
we choose orthonormal basis functions φ1, φ2, ..., φn, and ψ1, ψ2, ..., ψn,

and compute matrix A by aij =
∫ 1
0 K(s, t)φi(s)ψj(t)dsdt, then compute

its SVD.
The n singular values of A, (σ

(n)
i ) are approximately the n singular val-

ues of K, and,

uj(t) ' ũj(t) =
n∑

i=1

uijφi(t), vj(s) ' ṽj(s) =
n∑

i=1

vijψi(s)

where uij , and vij ’s are the elements of the singular vectors of A. More
precisely we have the following theorem.

Theorem 3.1. Let ||K|| denote the norm of K, and define [6],

δ2n = ||K||2 − ||A||2F ,

then
∑n

i=1(µi − σ
(n)
i )2 ≤ δ2n,

and for i = 1, 2, ... we have:

0 ≤ µi − σ(n)i ≤ δn

σ
(n)
i ≤ σ(n+1)

i ≤ µi
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max{||ui − ũi||2, ||vi − ṽi||2} ≤ (
2δn

µi − µi+1
)1/2

4. the smoothing properties of the kernel and picard
condition

The overall behavior of the singular values µi and the singular func-
tions ui and vi is by no means ”arbitrary”; their behavior is strongly
connected with the properties of the kernel K. The following holds.

• The ”smoother” the kernel K, the faster the singular values µi
decay to zero (where ”smoothness” is measured by the number
of continuous partial derivatives of K). If the derivatives of or-
der 0, ..., p exist and are continuous, then µi is approximately
O(i−p−1/2). The precise result is proved in [7] and summarized
in [8].

• The smaller the µi the more oscillations (or zero-crossings) there
will be in the singular functions ui and vi. This property is
perhaps impossible to prove in general, but it is often observed
in practice. It is related to the Riemann-Lebesgue lemma.

In order that there exist a square integrable solution f to the integral
equation (1.1), the right-hand side g must satisfy [9, chapter 2],

∞∑
i=1

(
(ui, g)

µi
)2 <∞, (4.1)

that is called the picard condition.
Picard condition is equal to g ∈ Range(K).
Consider that g does not belong to Range(K), and let gk denote the
approximation to g obtained from truncating its SVE expansion after k

terms, gk(s) =
∑k

i=1(ui, g)ui(s).
This gk is clearly satisfies the Picard condition. The corresponding ap-
proximate solution is,

fk(t) =
k∑

i=1

(ui, g)

µi
vi(t)

We conclude that as k →∞, we have gk → g, but,

||fk||2 →∞ as k →∞.

It is exactly this lack of stability of f that makes the integral equation
(1.1) ill posed.



Ill-Posed and Linear Inverse Problems 135

5. regularization

As we have seen in the previous section, the primary difficulty with ill-
posed problems is that they are practically underdetermined due to the
cluster of small singular values of K. Hence, it is necessary to incorpo-
rate further information about the desired solution in order to stabilize
the problem and to single out a useful and stable solution. This is the
purpose of regularization. Although many types of additional informa-
tion about the solution f to (1.1) are possible in principle see, e.g., the
survey in [10] the dominating approach to regularization is to allow a
certain residual associated with the regularized solution, with residual
norm,

ρ(f) = ||
∫ 1

0
K(s, t)f(t)dt− g(s)||

and then use one of the following four schemes.

• Minimize ρ(f) subject to the constraint that f belongs to a spec-
ified subset, f ∈ S.
• Minimize ρ(f) subject to the constraint that a measure w(f) of

the ”size” of f is less than some specified upper bound δ, i.e.,
w(f) ≤ δ.
• Minimize w(f) subject to the constraint ρ(f) ≤ α.
• Minimize a linear combination of w(f)2 and ρ(f)2:

Min{ρ(f)2 + λ2w(f)2}.
The last one is the well-known Tikhonov regularization method. In prac-
tice we usually discretize the integral equation and then apply some kind
of regularization. For more details one can see [3].

6. Numerical examples

In the previous section we present the regularization scheme for Fred-
holm integral equation of the first kind. But we can use it for the
discrete form of other equations that the matrix of linear system is ill-
posed. Consider the singular boundary value problem of the form [11].

(p(x)y′)′ = p(x)f(x, y), x ∈ (0, 1] (6.1)

with boundary conditions,

y′(0) = 0, αy(1) + βy′(1) = γ, (6.2)

or
y(0) = A, αy(1) + βy′(1) = γ, (6.3)

where
p(x) = xbg(x), x ∈ [0, 1].
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Here α > 0, β ≥ 0, and A and γ are finite constants. Also,the following
resrictions are imposed on p(x) and f(x, y).

(I)p(x) > 0 on [0, 1], p(x) ∈ C1(0, 1], and 1/g(x) is analytic in {z s.t. |z| <
r} for some r > 1.

(II)f(x, y) ∈ [0, 1] × R, is continuous, ∂f
∂y exists, continuous and non-

negative for all (x, y) ∈ [0, 1]×R.

The existence-uniqueness of eq.(6.1) has been established for BCs y(0) =
A and y(1) = B, with 0 ≤ b < 1. and BC’s y′(0) = 0 and y(1) = B

with b ≥ 0, provided that xp′

p is analytic in {zs.t.|z| < r} for some r > 1

[12,13].

The eq.(6.1), arises in the study of tumor growth problems, steady-
state oxygen diffusion in a cell with Michaleis-Menten uptake kinetics,
and distribution of heat sources in the human head [11].

We have discretize this equation using Legendre wavelets, the result
for the coefficients (solution of the linear system obtained by discretza-
tion) was,
c0 = −4.6358693076092977194 ∗ 106, c1 = −6.7582264983241763273 ∗
106,
c2 = −5.9099142767810083574 ∗ 106, c3 = −3.1770021176532618076 ∗
106,
c4 = 2.1188760718345176772∗105, c5 = 3.0419453143786254232∗106,
c6 = 4.4978182063968003491∗106, c7 = 4.3729982946561054292∗106,
c8 = 3.0178295836150515531∗106, c9 = 1.0918111655220634394∗106,
c10 = −7.3825057261862819434, c11 = −2.0216877298043717294∗106,
c12 = −2.6041990921200130978∗106, c13 = −2.5783384180672618095∗
106,
c14 = −2.1664432264550479477∗106, c15 = −1.6038311314732019976∗
106,
c16 = −1.0646835980362944770∗106, c17 = −6.3943235427383833427∗
105,
c18 = −3.4890121013572833342∗105, c19 = −1.7316778052680677547∗
105,
c20 = −78099.00000139694805, c21 = −31912.487693990200350,
c22 = −11757.36500885325238, c23 = −3878.575888516679465,
c24 = −1134.7567159384624654, c25 = −290.64966939574863,
c26 = −64.022020715699201532, c27 = −11.825148046192491,
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c28 = −1.763743121252254, c29 = −.199859762088155,
c30 = −0.15358571058327e− 1, c31 = −0.6035246206578086981e− 3.

By applying the regularization method we obtain the following result
with approximately the same residual,
c0 = −.89023366514234935536, c1 = .54799351644467802312,
c2 = .22987869633682692909, c3 = −.14654224228351210740,
c4 = −.19880287660064923473, c5 = 0.023855558285009152128,
c6 = 0.15688511320033616955, c7 = 0.042604455456950835228,
c8 = −.10699218169413489446, c9 = −0.078671951067718633939,
c10 = 0.054008137231122075279, c11 = 0.090551316510355457336,
c12 = −0.00424055919158032434, c13 = −0.08017636560392272455,
c14 = −0.03681827705766728097, c15 = 0.05236514881053306866,
c16 = 0.06114904944238824772, c17 = −0.01245121070830249877,
c18 = −0.06372770902085218976, c19 = −0.02806763699295286968,
c20 = 0.04048107925096862155, c21 = 0.05527295912277616750,
c22 = 0.00308355940655701700, c23 = −0.05026157850544944020,
c24 = −0.04830911919951919830, c25 = 0.00171251540542644326,
c26 = 0.05026641780697775711, c27 = 0.06421752678679124589,
c28 = 0.04746665224675341727, c29 = 0.023347956100351489280,
c30 = 0.0073387604485453123500, c31 = 0.00123384792989866633.

7. conclusions

In this paper we considered regularization for singular differential
equations equations. Regularization could be applied to linear systems of
equations that the coefficients matrix is ill-posed, so it is not restricted
to integral equations. As we have shown in this paper regularization
could be applied to singular boundary value problem. It is clear that it
can be used for other type of equations that are somehow ill-posed.
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