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ABSTRACT. The Sturm-Liouville boundary value problem of the
multi-order fractional differential equation

D [p(t) Dy u(t)] + q(t) f(t,u(t) = 0, ¢ € (0,1),
alimy o t'Pu(t) — b im0 t'~*p(t) DY, u(t) =0,
¢ limy1 u(t) + dlimgq p(t)D@u(t) =0
is studied. Results on the existence of solutions are established.
The analysis relies on a weighted function space and a fixed point

theorem. An example is given to illustrate the efficiency of the main
theorems.
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1. INTRODUCTION

In recent years, many authors have studied the existence of solutions
of boundary value problems for fractional differential equations with
Riemann-Liouville fractional derivative or Caputo’s fractional deriva-
tive, refer to Refs [1-16].
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In [14,15], the authors considered the existence and multiplicity of
positive solutions of the following boundary value problem of nonlinear
fractional differential equation

(t), Dl u(t), 0<t<1

D0+u(): ( U
=0, (1.1)
0,

u(0) +u/(0)
u(1) + /(1)

where 1 < o < 2is areal number, v € (0,a—1, and Dg, is the Caputo’s
fractional derivative of order x, and f : [0,1] x [0, +00) X R — [0, +00)
is continuous. By means of a fixed-point theorem on cones, existence
and multiplicity results of positive solutions of (1.1) were obtained.

n [16], the authors studied the existence of solutions of the follow-
ing more generalized boundary value problem of fractional differential
equation

D uft ) f(t U(L‘))v t €0, 7],
u(0) — fo (s,y)ds, (1.2)
u(T) + fo (s,y)ds,

where T" > 0, 1 < a < 2 is a real number, and D, is the Caputo’s
fractional derivative, and f,g,h:[0,7] x R — R is continuous.

In [I7], authors studied the solvability of the following two-point
boundary value problem for fractional p—Laplace differential equation

DF, [6,(Dg, u(t))] = £(t,u(t), Dg,u(t), t€[0,1],
u(0) = 0, (1.3)
*Dgu(1) = D u(0),

where Df, denotes the Caputo fractional derivatives of order *, 0 <
a,B<1,1<a+pB <2 ¢s) = |s[P%s is a p-Laplacian operator,
f :[0,1] x R? — R is continuous. By using the coincidence degree
theory, the existence of solutions for above fractional boundary value
problem was obtained.

It is well known that properties of fractional differential equations
with Riemann-Liouville fractional derivatives are different from those of
fractional differential equations with Caputo’s fractional derivatives [4].
To compare with [14-16], it is meaningful to define and study Sturm-
Liouville boundary value problems for fractional differential equations
with Riemmann-Liouville fractional derivatives.
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In this paper, we discuss the existence of solutions of the follow-
ing boundary value problem (BVP for short) for the nonlinear frac-
tional differential equation with multi-term Riemmann-Liouville frac-
tional derivatives

D [p(t) Dy u(®)] +a(t)F (1, u(t) =0, t€(0,1),
alim ' Pu(t) = b lim £'=°p(t) D, u(t) =0, (1.4)

c }gri u(t) + d%grip(t)DoJru(t) =0

where a,b,c,d > 0, Dj, is the Riemann-Liouville fractional derivative
of order #, 0 < B, < 1 with a+f > 1, f : [0,1] Xx R — R satis-
fies the assumption (H1) (see Section 2), p : (0,1) — (0,00) satisfies
the assumption (H2) (see Section 2), ¢ : (0,1) — [0,00) satisfies the
assumption (H3) (see Section 2).

We obtain the Green’s function of BVP(1.4) and establish the exis-
tence results of solutions of BVP(1.4). An example is given to illustrate
the efficiency of the main theorem.

We clarify the structure of sequential fractional differential equations.
It is the lack of commutativity of the fractional derivatives that rep-
resents an interesting complication that does not arise in the integer-
order setting. In the problem (1.4), we have a composition of two
fractional derivatives, which gives rise to a sequential problem. Prob-
lem (1.4) is a natural generalized form of ordinary differential equa-
tion [p(t)o(2’'(t))]) + f(t,z(t),2'(t)) = 0. In problem (1.4), we allow
v € (B,a+B).

The remainder of this paper is as follows: in section 2, we present
preliminary results. In section 3, the main theorems and their proof are
given. In section 4, an example is given to illustrate the main results.

2. PRELIMINARY RESULTS

For the convenience of the readers, we firstly present the necessary
definitions from the fractional calculus theory that can be found in the
literatures [4,7]. Denote the Gamma and Beta functions by

+o0o 1
Ia) = / s e7%ds, B(ag, ) = / (1—z)*2 122"z a; > 0, a3 > 0, B2 > 0.
0 0

Definition 2.1[4]. The Riemann-Liouville fractional integral of order
a > 0 of a function g : (0,00) — R is given by

12,g(t) = F(la) /0 (t — )2 g(s)ds,

provided that the right-hand side exists.
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Definition 2.2[4]. The Riemann-Liouville fractional derivative of
order o > 0 of a continuous function g : (0,00) — R is given by

Ldm [t g(s)
DYog(t) = ———— | —F"——d
090 = T oy dt”/o (t — s)o—n+1 @™
where n — 1 < a < n, provided that the right-hand side is point-wise

defined on (0, 00).
Lemma 2.1[4]. Let n —1 < a <n, u € C°0,00) () L(0,00). Then

I8, Dg u(t) = u(t) + Crt*™' + Cot* 2 - Cpt™™™,
where C; € R, i =1,2,...n, and for @« > 0, u > —1, it holds that

I'(p+1) I(p+1)

N U U —a—
F'p+a+1) I'p—a+1)

It = pee, D =

Suppose that

(H1) f:]0,1] x R — R satisfies that
(i) uw— f(t,t°u) is continuous for all ¢ € [0, 1],
(ii) t — f(t,t°~'u) is measurable on [0,1] for all (u,v) € R? and
(iii) for each r > 0 there exists M, > 0 such that

’f (t,tﬁ_luﬂ < M, for all t € [0,1], |ul, |v] < 7.

(H2) p: (0,1) — (0,00) is continuous and there exists a number
My > 0 such that p(t) < M(lff% for all t € (0,1).

(H3) ¢ :(0,1) — [0,00) is continuous and there exist k& > —1 and
| > —a with k+1+ 1> 0 such that ¢(t) < t*(1 —t)! for all t € (0,1) (q
may be singular at t =0 and ¢ = 1).

(H4) m is a positive integer, there exist nonnegative functions ¢y, ¢ €
L9%(0,1), u > 0 such that

la(®) (47 ) = go| < w(B)lul,t € (0,1),u € R.
For our construction, we let
xz € C(0,1],
X =<z:(0,1] - R the following limit exists
limy 0 t' P2 (t)
For x € X, let

lz] = sup 7|z (t)].
te(0,1)

Then X is a Banach space.

Denote

o(s,t) = fst (t—w)ﬁ;tgl);—s)a—l dw, A= (bc+ ad)'(B) + aco(0,1).




Sturm-Liouville boundary value problems for MFDEs 111

Lemma 2.2. Suppose that A # 0, z € X and (H1)-(H3) hold. Then
u is a solution of

D, [p(t) Dy u(®)] + q(t) f (£, 2(1)) = 0,0 < t < 1,
alimt_,o 7 Bu(t) — b limy_o t'~p(t )D0+u( ) =0, (2.1)
¢ limy_y1 u(t) + dlimg—yy p(t)Dngu( ) =0,

if and only if

1
- /0 G(t, 8)a(s) £ (1, 2(s))ds, (2:2)
where
—do(s,t)
) 1 +ad?(?2)aﬁ(01,()(1 —)s)‘i l—i—a?agoét) (( )) s <t
Gt,s) = =————— +bdl’ t 1 A4+ bl (Bt
L(a)T(B)d adl(3)a(0,t)(1 — 8)*~ 1 + aco (0,t)o (s, 1) ¢ <
AT (B)2t91(1 — s)o~L + beD(B)F 1o(s, 1), = °
(2.3)

Proof. Since x € X, we get r = ||z|| < +o00. Then (H1) implies that
there exists a nonnegative number M, such that

f(t, (1)) = ]f (t,tﬂ—l[tl—ﬁx(t)])) < M, for all t € (0,1).

If w is a solution of BVP(2.1), then we get

p(t)Déiu(t) = —1/0 (t —s)* Lq(s)f(s,z(s))ds + ert* 1t € (0,1)

for some c¢; € R. Then

)afl

D ult) = — ks o L5lq(s) f(s,2(5))ds + e1

— c Safl _
u(t) = fg (trﬂ [ p(s fO F(a) (w) f(w, z(w))dw + 1p(s) ds + cot? 1,

-« ()D0+u —t1= afo wa (s)f(s,z(s))ds + c1.
Since
10|t = )27 a(s) fs,(s))ds| < 67 f3(t = 5) 155 (1~ 5))' Mo

< oo fh(t — 5)oH1gk M, ds = TR, f —w)* = lywkdw — 0,t — 0,
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and

-8 ‘fot i [_ﬁ S BT ) f (w0, 2wy + cl%] ds‘

<t i Jo (= 9% s Swer Jo (s — ) b (1 — w) My dwds
et P fg(t - S)B_I%ds

< MTMotl_ﬁm f(f(t —5)P st — )t P [0(s — w) T whdwds
+e1 Mot' =8 fot(t — 5)flgatB=2(4 — g)l—a=Bgs

< M, Mot' = sy Jo (6 — ) 752 1asB (o + Lk + 1)

i Mot' =8 fg(t — )52 TB2s

= MTMOt’“““F(a)lF(B)B(l —a,a+B+k+0)Bla+lk+1)

+e1 MotB(1 — o, o0 + 8 — 1) — 0, — 0.

From the boundary conditions in (2.1), we get

acy — bey =0,

o1 [~ gty o (1= )77 fi (s — )2 g(w) fw, () duwds

c 1 _ sa—l
+F(1B) 0 (]. - S)ﬁ 1 p(s) dS + 02i|

+d [—%a) fol(l —5)¥ 1 f(s,2(s))ds + cl] =0.
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It follows that

_ F(a) fo (1—=8)*"tq(s) f(s,x(s))ds
bc—i—ad—i—r‘zg) fo (1— s)ﬁ—l%ds

(1-s) p(ls) fos(s—w)O‘*lq(w)f(w,a:(w))dwds

bc+ad+r‘z2> fo (178)5_1%(18 ’

4 F(a)l"(ﬁ) fO

% Jo (1=5)°"1q(s) f(s,(s),D], a(s))ds

betadt (255 [ (1-5)7 =120 ds

F(a)F 73 fO (1—s)8— 1p()f0 s—w)* " Lg(w) f(w,z(w))duds

ac sa—1
bc—&-ad—l—r(ﬂ) fo (1—s)f—1 MoK

+

Therefore,

u(t) = — ey Jo (6 = )77 g Jo (s — ) a(w) f (w, w(w))dwds

a— a s"‘l s,x(s))ds
T (i — sypre) dU(B) [ (1=5)~1q(s) f(s,2(s))d

p(S) dsr(a)r(ﬁ) |:(bc+ad) +(IC fo (1 S B ! Sa(e)l ds

ac fol(l—s)ﬁ_1 p(ls) fOS (s—w)o‘_1q(w)f(w,m(w))dwds:|

sa—1
(be+ad)T'(B)+ac [ (1-5)7~1 £ ds

-1 [bA0(8) fy (1=5)*Na(s)/ (s,a(s), D], w(s))ds
INE) (be+ad)T(B)+ac [ (1—s)8-1 f@)l ds

(be+ad)T'(B)+ac fol(l—s)5*1 E

be fol(l—s)ﬁf1 ﬁ fos(s—w)o‘1q(w)f(w,x(w))dud5:|
p(s)

Since

fg(t — s)féLlﬁ f;(s —w)* g(w) f(w, z(w))dwds

= LS = 5P (s — ) Ldsg(w) f(w, () duw

= [y JH O g (5) £ (5, 2(5)) ds

= fg o(s,t)q(s)f(s,x(s))ds,
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we get,

u(t) = =i Jo o (5, 0)a(5) f(5,2(s))ds

i a(0,t) adl(B fO (1—s8)>"Lq(s) f(s, x(s) ds—i—acfo a(s,1)q(s) f(s,z(s))ds
L(a)L'(8)

_1_155;1 bdT'(B) fol(lfs)"‘_lq(s) f(s, x(s) ds+bcf0 (s,1)q(s) f(s,2(s))ds
I'(«)

= ST Jo [—00(s,1) + adT'(B)o(0,)(1 — 5)°~! + aca (0, ) (s, 1)
+bdT(8)25 (1 — 5)2~1 4 bel(B)t9 10 (s,1)] q(5) f (s, 2(s))ds
+5emm Ji [@dD(B)a(0,6)(1 — 5)°7" + aco(0,t)a(s, 1)
%meﬂFﬁ_Wl—sY“l+bdXﬁﬁﬂ4a@;U}@$f@¢d@yﬁ

= [ G(t,8)q(s) f (s, 2(s))ds.

Then u satisfies (2.2). Here G is defined by (2.3). It is easy to prove
that v € X.

Reciprocally, let u satisfy (2.2). It is easy to show that u € X, and

: 17,8 _ . 11—« _ . .
a}l_r%t u(t)=b lim ¢ " “p(t )D0+u( )=0, ¢ %gl%u(t)—kd%gl%p( )D0+u( )=

t—0

Furthermore, we have D, [p(t )D0+u( )4+q(t)f(t,z(t)) =0. Thenu € X
is a solution of BVP(2.1). The proof is complete.

Lemma 2.3. Suppose that A > 0, and (H2) holds. Then

t*P1G(s, 1) < L(1 — 5)*7L, s,t € (0,1), (2.4)

L= W [AMB(1 — a,a+ — 1) + adl'(B)MoB(1 — a,a + 3 — 1)

+acMiB(1 — a,a+ B — 1)2 + bdl'(8)? + bel' (B)MoB(1 — a0 + 8 — 1)] .

0.
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Proof. From (2.3), one sees for 0 < s <t < 1 that

tl—ﬁg(syt) _ -8 /t (t — u)ﬁ;l(g; _ S)Q_ldu

t— —1,0-1
= tl_ﬁ/ s w) R dv
0 p(s+v)

1 —w 6—1wa—1
= t'7P@t — st /0 (;(s - zu(t ) dw
B w1 [t My(1 — w)B~ 1wt
R A s el fererrr el

B ot 1 M, (1 _ w)ﬁ—lwa—l
PP [ i

IN

IN

1
= Mo/ (1 —w) w2 dw
0
= M()B(l —a,a+5— 1).
Hence, for 0 < s <t < 1, we get

121G (s, 1)
1
= T@r@A

tact'P|o(0,1)]|o (s, 1)] + bdD(8)2(1 — $)°~1 + bel(B)o (s, 1)]

(Ao (s,1)] + adP(B) o (0,1)|(1 — )1

! a—1
< Fanaa AMB( — a5 = 1) +adl(§)MoB(1L = a0+ 6= 1)(1 - 5)
+acMgB(1 — a,a + 8 — 1)* + bdD(8)*(1 — 5)* + bel (B) MoB(1 — o, + § — 1]
< F@z)l“l(ﬁ)A [AMB(1 —a,a+ —1)+adl'(B)MyB(1 —a,a+ 3 — 1)
+acMIB(1 — o, o+ B — 1)? + bdT(8)? + bel(B) MoB(1 — a,a + 8 — 1)] (1 — 5)*7 !
= L(1—s)*L

For 0 <t < s <1, we can prove similarly that
t'P|G(s,t)] < L(1 —s)* L.
The proof of (2.4) is completed.

Now, we define the operator 7" on X, by

1
(Ta)(t) = /O G(t, 5)g(3) (s, 2(s))ds

Lemma 2.4. Suppose that A > 0, (H1)-(H3) hold. Then T': X —
X is completely continuous.
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Proof. To complete the proof, we must prove that 7' : X — X is
well defined, T is continuous and 7" maps any bounded subsets of X to
relative compact sets of X [15]. We divide the proof into four steps.

Step 1. We prove that T : X — X is well defined.

For x € X, we have

sup t17P|z(t)| = r < oc.
te(0,1)

Hence from (H1) there exists a nonnegative function ¢, € L'(0,1) such
that

a(s) (s, ()] = g (667710 Pa(t))| < 6,(1), 1 € (0,1).

From
(T2)(t) = = gairggy Jo (t = 9)° 7155 Jo (5 — w)* L w) f (u, o (u) duds
5 1 sa—1 1 adl(B) [y (1—s)*"1q(s) f(s,x(s))ds
+f0 p(s) dSF( )T(B) [(bc+ad)r(5)+acfg(1—s)6—lS;’(S)l ds

ac fol(l—s)ﬁf1 p(ls> I (s—u)o‘1q(u)f(u,a:(u))duds:|

sa—1
(bet+ad)T'(B)+ac fol(lfs)ﬂ—l Gy ds

181 bdL(B) [ (1=5)°"Lg(s)f (s,2(s))ds

INC) (be+ad)T'(B)+ac fol (1—s)p-1 s;(;)l ds

181 bcfo1 1—s 5_1p(15 J5 (s—uw)*~q(w) f (u,z(u))duds
ds

TT@) (be+ad)T(B)+ac [ (1—s)B—1

sa—1 )

p(s)

and (H2), we find that (T'u) is continuous on (0, 1] and there exists the
limit

lim ¢'=%(T'x) (¢).
t—0

Hence Tz € X. Then T : X — X is well defined.
Step 2. We prove that T is continuous.
Let {yn}22, be a sequence such that y, — yo in X. Then

r= sup |lyn|l < oc.
n=0,1,2,-

So there exists a nonnegative a—well function ¢, such that

|q() f (8 yn ()] < &0 ()
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holds for t € (0,1),n = 0,1,2,---. Then for ¢t € (0,1), we have from
Lemma 2.3 that

P (Tyn) (t) = (Tyo) (1)]

= | [y #7965, () (s, yn(3))ds — Jy 175G (s, )a(s) £ (s, () ds

< Jy t79G(5,)la(5) £ (5, yn(s), Dy yn (1)) — a(s) (5,0 (s))|ds

<Ly (1= 5)2"Yq(s)f(s,yn(s)) — f(5,0(5))|ds

< 2L [1(1 = 5)* ¢ (s)ds.
Since f is continuous, by the Lebesgue dominated convergence theorem,
we get ||[Ty, — Tyol| = 0 as n — oo. Then T is continuous.

Step 3. Let M ={y € X : ||y|| < r}. We prove that T'M is bounded.

It suffices to show that there exists a positive number L > 0 such that
foreach x € M ={y € X : ||y|| < r}, we have ||Ty|| < L.

By the assumption, there exists a nonnegative a—well function ¢, €
L(0,1) such that

[f (& y(@)] < ¢r(t),t € (0,1).

By the definition of T', for y € M, we get

1
A0l = | [ 8Gs)als) fs(s)ds

0

1
— ) g(s) F(s,y(s))|ds
< /O L(1 = 5)°"g(s) (s, y(s))d
1
< L/O (1—5)*"Lg,.(s)ds.

It follows that there exists L > 0 such that |[Ty|| < L for each y € {y €
X :|ly|l| £ r}. Then T maps bounded sets into bounded sets in X.
Step 4. Let M = {y € X : ||ly|]| < r}. Prove that t!=8TM is
equicontinuous on [0, 1].
Let t1,t € (0,1] with t; < tg and x € M = {y € X : ||y|| < r}. By
the assumption, there exists a a—well function ¢, € L1(0,1) such that

(@) f(t, 2())] < ¢r(t), 1 € (0,1).
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118
Note
(T2)(t) = — sty o (s, 10a(s) (5, 2(5))ds
4o adl B) Jo (1=)°"1q(s)f (s,2(s))dstac [y o(s,1)q(s)f (s,2(s))ds
T(a)T(B) 5
£9=1 bdL(B) [y (1=5)°"1q(s) f (s,x(s))ds+be 5 o(s,Da(s)f (s,:2(s))ds
I'(«) )
For s € (0,t1], one sees from (7) that

[ty o (s, t2) =t P (s, 1)
1— to (to—u)P~1(u—s)*— t1 (t uﬁ 1u s)x—1
’t 5f2(2 )p(é) ) du—t1 /Bfl(l pu) ) du

to [ty P (ta—u)? 1=, P (t1—u)P | (u—s)* !
— fs2 [t 2 1p(u)1 ] i du

a—1

dul

’t tg (t1—u)P 1 (u—s)
1 t1 p(u)

76(152—5—1))[3_1—tifﬁ(tl—s—’u)ﬁ_l]vo‘ 1 .
p(s+v)

— |l L

1-8 pta—s (t1—s—v)P~1yp>—1!
+ ’tl s PO dv

1 P (b —s) B (1—w) A 1B (4 —s—w(ta—s)) B L (t2 —s) Jw 1d
= fo p(s+w(ta—s))
1-3 a s (1 w)B =Lyt
+t, Pt — )AL ) = (n ) Ty dw
— dw

(ta—s5)2TB=1(1—w)B=1 1178 (1) —s—w(t2—s)) P~ (ta—s)* w1
378 (tg—s)o+6-1

w

<Mf1[t

- a+51 tls (1—w)f— w1
(t1 —s) ) 1P (41 —s)ath- —dw

_ t1—s B-1
tl B o= W
tlfﬁ 1-w

2

+M0t%7
(1 —w)?~lw*ldw

<M0fo

to—s

+My fltrs(l—w)ﬁ_1 =1
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— 0 uniformly in (0,t1] as to — ¢1.

We consider three cases:
Case 1. for s € (0,t1], from (2.3) that

178G (s, t1) — 5P G(s, o)

= F(a)%“(ﬁ)é [5[t5_ﬂ0(8,t2) - ﬂ_ﬁa(s,tl)]
+adl(B)(1 = 8)° 'ty 0(0,11) — t5 7 (0, 1))

+aco (s, 1)[t%_ﬁ0(0, t1) — t;_ﬂa(oa t2)]}

Case 2. For s € [t;,t2], we have

178Gt s) — 5P G(ty, s) =

+adl(B)(1 = 5)°~ [ty 5(0,11) — £, 75(0,15)]

+aco (s, 1)[15%7'30(0, t1) — téiﬁa(ov tz)]}

Case 3. For s € [tg, 1], we have

1

+aco (s, 1)[t1750(0,t1) - t2 a(0,t2) }
1

Then from t'BG(t,s) < L(1 — s)*~

ty 7Glt1,5) —ty "Glta,s) = m [adr‘(ﬁ)(l —5)27 Uty Po(0,t1) —ty

, we get

67 (Ty) (1) — 5 (Ty)(82)]

= |7 5) — 877Gtz 5)la(s) £ (5, w(s))ds
+ 21070 G (1, s) =ty Glt, 9)a(s) [ (s, y(s))ds
+ ot PG, 5) =t G2, 5)]a(s) f (5, y(s))ds
< o' 177Gt 5) =ty Gt2, )la(s)| £ (s, y(5)|ds
+ 211 77G (b1, ) =ty Glta, 9)la(s) (s, y(s))|ds

+ [ 1P Gt s) — 1y PGt 5)la(s)| £ (5, y(s))|ds

1-8
@S [5t2 o(s,t2)
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(Oa t2)]
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< Jot 1 Gt 5) =ty PGlta, 5) |6, (s)ds
+ 2 18P G (b, 8) =t Gk, 5) |60 (s)ds
+ [, 177Gt 5) — 1y Gt2, 9) |6, (5)ds
< Jo PGt 5) =t Gt 8) 6, (s)ds
+2L fttf(l —5)* Lg.(s)ds
+ [y 167Gt s) =ty P Glta, 9) |6, (s)ds
< rars i [5[75;—%(5,752) — 1 P0(s,t1)]
+adl(B)(1 = 5)°~ 1ty 70 (0,11) — 13 70(0, 12)]
taco(s,1)[t1P0(0,t1) — t5 20 (0,12)]| ¢p(s)ds

+2L fttlr"(l —5)% Lg.(s)ds

+ s J [0A0(B)(1 = 920 (0,1) — 65 0(0, 1)

taco (s, 1)[t1P0(0,t1) — t5 25 (0, 12)]| ¢p(s)ds
<t Jo [0 o (s, 1) — 1 Par(s, 1)
+adD(B)[t:P0(0,t1) — t3 o (0, 12)|
FacMo|t! P (0, t1) — t;*ﬂa(o,tg)@ (1 — 8)* Lo, (s)ds
+2L [2(1 = 5)° 1, (s)ds

+ ik o [adT B0 (0,1) — 1570 (0, 1)

FacMo|t: P (0, t1) — t;*ﬂa(o,tg)@ (1 — s)* 1, (s)ds

_ -8

S ( )F(,B |:5 |t2 (Sth) tl U(Svtl)’ t1,t2€s,1]
+adl(B)|t; P o(0,t1) -t Po(0,12)]
+acMolti%5(0, 1) — t;ﬂa(o,@)@ JH1 = sy, (s)ds
+2L [2(1 = )2y (s)ds

+m [adl“(ﬁ)ﬁi_ﬁa((),tl) — té_ﬁa(o,tz)\

—l—acM0|tifﬁ0(O,t1) a(0,t2) }fo )* "o (s)ds
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Therefore, t'=#TM is equicontinuous on [0, 1].

From Steps 3 and 4, the Arzela-Ascoli theorem implies that T'(M) is
relatively compact for each bounded set M C X. Thus, the operator
T : X — X is completely continuous.

3. MAIN THEOREMS

Now, we prove the main result. Denote

1
W(t) = /0 Gls, D)o (s)ds

and L be defined in Section 2.

Theorem 3.1. Suppose that (H1)-(H4) hold. Then BVP(1.4) has
at least one solution if

L L/l(l — 5)* Ly (s)ds. (3.1)
yelo,00) (Y + [[ W]~ 0

Proof. From (3.1), we can choose 7 > 0 such that

r ! -1
G > L, G v o

Denote
M, ={ze X :|z—¥| <r}
For x € M,., we have
||| < [lz = Wl| + [[¥]] <+ [|¥]].

Furthermore,

m

4 (¢ 2(6)) — Go(t)] < () [t (o)
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So (3.2) implies that

1
tP|(Ta)(t) — 2 (1)] tl_ﬂ/o G(t,5)lq(s) (s, 2(s)) = Yo(s)]ds

1
< / 121G (1, 9)la(5)f (5, 2(5)) — tols)|ds
0
1
< I /0 (1 - 5)°q(s) f (5, 2(5)) — thols)|ds
1
+ / (1 - )2 q(s) f (5, 2(5)) — thols)|ds
1
< L/O (1—5)“71¢1(s)‘3175$(8)‘ud5
1
<L /0 (1 — )2 Lyp(s)ds] ||
1
< L /0 (1= ) Lyp(s)ds[r + ||| ]
< 7

It follows that Tx € M,. So T(M,) C M, and Schauder fixed point
theorem implies that T has a fixed point z € M,. This z is a solution
of BVP (1.4). The proof is complete.

Remark 3.1. Since

17 /’L = 1’
Y — ) € (0,1)
sup ——— = y M ) )
+ |||~ ) L
yelo,00) (¥ + Y1) e u>1,

we have the following corollary:
Corollary 3.1. Suppose that (H1)-(H3) hold. Then BVP(1.3) has
at least one solution if one of the followings conditions holds:

(i) we(0,1).
(i) p=1and L [, (1 —s)* Lp(s)ds < 1.

Y yu—1
(iii) p > 1 and % > Lfol(l — 5)* Ly(s)ds.

4. AN EXAMPLE

In this section, we give an example to illustrate the main theorem.
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Example 4.1. LetA > 0. Consider the following BVP

D? [t2D0+u( N+ (L=t 2 +utifu)* =0, te(0,1,1<a<2
1
limy t2u( ) — limg—o D u(t) =0,
1

limy 1 u(t) + limg—1 Dy, u(t) = 0,
where v > 0 is a constant.

Correspondi?g to BVP(4.1), we find that g = %, o= %, a=b=c=
d=1, p(t) =tz and

Flt,x) = (1—t)it 2 + ptiah,

One can show that f satisfies (H1) and p satisfies (H2) with My = 1,
q satisfies (H3).
It is easy to see that

F(bthe) = (=03 3 4 urd b,

Choose 9o(t) = (1 — t)% 72 and P(t) = vt1-2. Then both v and v
are nonnegative measurable functions. So (H4) holds with g, v and p
defined above.

By direct computation, we find

3 1
1—wu)1 ty2—t 4
0(0,1)_/ ( u)a " uz du =2
0 3

1
u 2

A = (be+ad)'(B) + aco(0,1) = 2I'(3/4) + 2,

L= [AMB(1/2,1/4) + T'(3/4)B(1/2,1/4)

/AT GIIA
B(1/2,1/4) + T'(3/4)* + I'(3/4)B(1/2,1/4)] ,
and

W)= sup 50(t) = sup tz/ G(s, t)ols >ds<L/ (1—s)" $ho(s)ds

t€(0,1) te(0,1)

By Corollary 3.1, we get BVP(4.1) has at least one solution if one of
the followings holds:
(i) pe(0,1).
(ii) p=1and VLfO (1—y9) %SidSZZ/LB(l/2,5/4)<1
(iii) p>1 and
(n =1

po T VL/01(1_8)—%sids [L/Olu—s)—%u}o(s)ds

MH

pn—1

= vI'B(1/2,5/4)B(3/4,1/2)"7 1,
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