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AN APPLICATION OF FIBONACCI NUMBERS INTO INFINITE TOEPLITZ
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ABSTRACT. The main purpose of this paper is to define a new regular matrix by us-
ing Fibonacci numbers and to investigate its matrix domain in the classical sequence
spaced,, (., c andcy, wherel < p < co.
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1. INTRODUCTION

The Fibonacci numbers has been discussed in so many articles and books (see [1-
3]). The Fibonacci numbers are the sequence of nunlygis® , defined by the linear
recurrence equations

fOZO andf1:17 fn:fn—l+fn—2; n>2.

Fibonacci numbers have many interesting properties and applications in arts, sciences
and architecture. For example, the ratio sequences of Fibonacci numbers converges to
the golden section which is important in sciences and arts. Also, some basic properties
of Fibonacci numbers are given as follows (see [2,3]):

S fa=far—1 n>1,
k=1

Y F2=fafurs n>1,
k=1

o0

> "1/ fi converges.

k=1
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In this paper, we define the Fibonacci matfix= (f.x);—, by using Fibonacci
numbersf,, and introduce some new sequence spaces related to matrix donféin of
the sequence spacgs /.., c andcy, wherel < p < co.

2. THE FIBONACCI MATRIX F AND SOME NEW SEQUENCE SPACES

Let w be the space of real sequences. Any vector subspacei®fcalled as a
sequence space. By, ¢, cand/, (1 < p < oo), we denote the sets of all bounded,
convergent, null sequences apeabsolutely convergent series, respectively.

Let X andY be two sequence spaces atd= (a,;) be an infinite matrix of real
numbersa,;., wheren, k € N° = {1,2,3,...}. We write A = (a,;) instead ofA =
(ank);r=1- Then, we say thatl defines a matrix mapping fronY into Y and we
denote it by writingA : X — Y if for every sequence = (z;) € X the sequence
Az = {A,(x)}.2,, the A—transform ofz, is inY'; where

n=1?

Ap(x) = iankxk (n € NO) ) (2.1)

By (X,Y), we denote the class of all matricelssuch that4d : X — Y. Thus,

A € (X,Y) if and only if the series on the right side of (2.1) converges for each
n € N and everyr € X and we havedr ¢ Y for all z € X. The matrix domainX 4

of an infinite matrixA in sequence spack is defined by

Xa={r=(ay) cw: Az € X} (2.2)

which is a sequence space. The approach is constructing a new sequence space by
means of the matrix domain of a particular limitation method has recently been em-
ployed by several authors, see for instance [4-6]. A sequence spacealled K
space if it is a complete linear metric space with continuous coordingtesX — R
(n € N°), whereR denotes the real field ang,(z) = =, for all x = (x;,) € X and
everyn € N, A BK space is a normedF' K space, that is, aBK space is a Banach
space with continuous coordinates. The spgcél < p < oo) is BK space with
Iz, = (> o |z,|”)"/* andc,, ¢ and(., are BK spaces withiz || = supy, |k -

The following lemma (known as the Toeplitz Theorem) contains necessary and suf-
ficient condition for regularity of a matrix.

Lemma 2.1([7, Lemma 2.2]) Matrix A = (an);%—; IS regular if and only if the
following three conditions hold:

(1) There exists\/ > 0 such that for every, = 1,2, ... the following inequality
holds:

[e.9]

k=1
(2) lima,, = 0foreveryk =1,2,...;

n—oo

@) lim % = 1.

Let (¢x) be a sequence of positive numbers and

k=1
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Then the matrix?? = (r?, ) of the Riesz mean is given by

a _ % (I1<k<n)
Tk =00 (k> n),

It is known that the Riesz matrik? is a Toeplitz matrix if and only if),, — oo, as
n — oo [8].
Now, we define the Fibonacci matrix = (f.x);5—; by

2
fu—{ Tfm A<k<mn)
0 (k>n).

that is,

T

I
.. élHal’—‘Ql’iwl’—‘ —_
O O O OO

- Bl beisim ©
- Blelsos © ©
Blnle o © ©
BN oo o

It is obvious that the matri¥’ is a triangle, that ig,,,, # 0 and f,,, = 0 for & > n (
n=1,2,3,..). Also, it follows by Lemma 2.1 that the methddis regular.

Throughout, letX denotes any of the classical sequence spéces, ¢, and/,
(1 < p < o0). Then the Fibonacci sequence spatg) is defined by

X(F)={z=(zy) ew:y=(y) € X},
where the sequenge= (y;) is the F’-transform of a sequence= (zy), i.e,

k
> fix; forallk e N°. (2.3)

J=1

1
 fefrn

With the notation (2.2), we can redefine the spadé”) as the matrix domain of the
triangle £ in the spaceX, that is

yr = Fi(2)

X(F) = Xp. (2.4)
Theorem 2.2. The spaceX (F') is a BK space with the norm given by

sgp Uk | if X € {le,c,co}

2l xmy = IF @) x = llyllx = (2.5)

0 1/p
<Z]yk]p) if X =10, 1<p<o0.
k=1

Proof. Since the matrixt’ is a triangle, we have the result by (2.5) and Theorem
4.3.12 of Wilansky [9, p.63].

Theorem 2.3. The sequence spacé(F) is isometrically isomorphic to the spacg,
that is, X (F) = X.



4 E.E . KARA AND M. BASARIR

Proof. To prove this, we should show the existence of an isometric isomorphism
between the spaceX(F') and X. Consider the transformatiofi defined, with the
notation of (2.3), fromX (F) to X by x — y = Tx. Then, we hav€'z = y = F(z) €
X for everyz € X(F). Also, the linearity ofl" is trivial. Further, it is easy to see that
x = 0 wheneverl'x = 0 and hencd is injective.

Furthermore, ley = (yx) € X be given and then define the sequence (x;) by

T — fk+1y _ Ey )

k fk k fk k—1,

Then, by using (2.3) and (2.6), we have for everg N° that
k

1
Filo) = fkfk—&-lszxj

(k € N%). (2.6)

J=1

k
= ! Z fi (fivyy — fimayi-1)
j=1

Jrfr
= Yk

This shows that'(z) = y and, sincey € X we obtain thatF'(x) € X. Thus, we
deduce that € X (F') andTz = y. Hence,T' is surjective.
Moreover, for anyr € X (F'), we have by (2.5) of Theorem 2.2 that

IT(@)x = lyllx = 1F@)x = Izl

which shows thafl” is norm preserving. Hencd, is isometry. Consequently, the
spacesX (F') and X are isometrically isomorphic. This concludes the proof.

Lemma 2.4. Let{f,}>, be Fibonacci numbers sequences. Then we have

AL
Sllip (fk;fnfn—i-l) = oo

Proof. This is a consequence of [5, Lemma 4.11] since the seq(%) isin
.

Theorem 2.5. The inclusionX C X (F') holds.

Itis clear that the inclusions C ¢o(F') andc C ¢(F’) since the matrix is a regular
matrix.

Now, letx = (z;) € (. Then, there is a constaht > 0 such thatz,| < K for all
k € N° Thus, we have for every € N° that

1 n
[Fn(z)] < A
k=1

fnfn+1 _

IN

K K.
=K
oo 2
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which shows that'(z) € (.. Therefore, we deduce that = (z;) € /. implies
x = (z1) € loo(F).

Finally, let1 < p < oo and take any: = (xy) € ¢,. Then, for every» € N°, by
applying the Hblder’s inequality

- P 1p
E. ()P < L 2.1
Rl < |3 gl @)
M n 12T n p—1
fi i
T

kZ Fudur kZ Fufuii

IA

1 &=
e T .
fnfn-‘rl ;fk ’ k’
Thus, by the fact iff2.7) that
oo o 1 n
E. ()P < 21k lP
SR € 3 g3 Rl

o0

_ p a1
B Z|xk| fk;fkfk—i-l

n=1

and hence .
1z[[7, () < KDY |’ = K lz][7, (2.8)

n=1
where K = sup, [f2> 02, 1/ fufus1] < oo by Lemma 2.4. This shows that €
¢,(F'). Hence, we deduce that the inclusionc ¢,(F) holds forl < p < co. By the
similar discussions, it may be easily proved that the inequality (2.8) also holds in the
casep = 1 and so we omit the detail. This completes the proof.
Now, we show that the converse of Theorem 2.5 is also true. In [4], Mursaleen and
Noman have defined the matix= (\,;.) by

Ank:{ w5 (1<k<n)
0 (k>n) ~’
where) = ()\) is strictly increasing sequence of positive reals which tends to infinity,
that is
0< A <X <.. and )\, — oo ask — oo.
If we take),, = f,.fui1 (n € N%) in the matrixA, thenF = A (A, — \y_1 = f7 for
everyk € N%). Thus, we conclude the following result:

Theorem 2.6. The inclusionX (F") C X holds.
Proof. Let \, = f,.fur1 (n € N°). Then we have that

. /\n+1 o . fn+2
lim = lim

n—oo fn

= 1+¢p>1,
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where is the golden section, that ig, = (1 + v/5)/2. Hence, from [4, Corollary
4.7] and [5, Corollary 4.191X (F') C X for X € {¢,,¢c,cy}, wherel < p < oo. This
completes the proof.

Corollary 2.7. The equalityX (F') = X holds.

Proof. This is an immediate consequence of Theorems 2.5 and 2.6.
Remark 2.8. We may note that if we puf,, = f7? for all k£, then the matrixt’ is the
special case of the matriRi( Q,, = > _, [£ = faSat1)-

3. CONCLUSION

Consequently, the Fibonacci matifkis a regular matrix which is a special case of
Riesz matrix. AlsoXr = X for X € {{,,c,c}, wherel < p < oco. One can ask
if X is an arbitrary normed or paranormed space, does the equality: X holds?
Morever, One can study the spectrum of the mattix the classical sequence spaces.
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