
Caspian Journal of Mathematical Sciences(CJMS)
University of Mazandaran, Iran

http://www.cjms.umz.ac.ir
ISSN: 1735-0611

CJMS. 1(1)(2012), 43-47

AN APPLICATION OF FIBONACCI NUMBERS INTO INFINITE TOEPLITZ
MATRICES

E.E. KARA1 AND M. BASARIR2,∗

ABSTRACT. The main purpose of this paper is to define a new regular matrix by us-
ing Fibonacci numbers and to investigate its matrix domain in the classical sequence
spaces̀p, `∞, c andc0, where1 ≤ p < ∞.
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1. I NTRODUCTION

The Fibonacci numbers has been discussed in so many articles and books (see [1-
3]). The Fibonacci numbers are the sequence of numbers{fn}∞n=1 defined by the linear
recurrence equations

f0 = 0 and f1 = 1, fn = fn−1 + fn−2; n ≥ 2 .

Fibonacci numbers have many interesting properties and applications in arts, sciences
and architecture. For example, the ratio sequences of Fibonacci numbers converges to
the golden section which is important in sciences and arts. Also, some basic properties
of Fibonacci numbers are given as follows (see [2,3]):

n∑
k=1

fn = fn+2 − 1; n ≥ 1,

n∑
k=1

f 2
n = fnfn+1; n ≥ 1,

∞∑
k=1

1/fk converges.
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In this paper, we define the Fibonacci matrixF = (fnk)
∞
n,k=1 by using Fibonacci

numbersfn and introduce some new sequence spaces related to matrix domain ofF in
the sequence spaces`p, `∞, c andc0, where1 ≤ p < ∞.

2. THE FIBONACCI M ATRIX F AND SOME NEW SEQUENCE SPACES

Let ω be the space of real sequences. Any vector subspace ofω is called as a
sequence space. By`∞, c, c and`p (1 ≤ p < ∞), we denote the sets of all bounded,
convergent, null sequences andp-absolutely convergent series, respectively.

Let X andY be two sequence spaces andA = (ank) be an infinite matrix of real
numbersank, wheren, k ∈ N0 = {1, 2, 3, ...}. We writeA = (ank) instead ofA =
(ank)

∞
n,k=1. Then, we say thatA defines a matrix mapping fromX into Y and we

denote it by writingA : X → Y, if for every sequencex = (xk) ∈ X the sequence
Ax = {An(x)}∞n=1, theA−transform ofx, is in Y ; where

An(x) =
∞∑

n=1

ankxk

(
n ∈ N0

)
. (2.1)

By (X, Y ), we denote the class of all matricesA such thatA : X → Y . Thus,
A ∈ (X, Y ) if and only if the series on the right side of (2.1) converges for each
n ∈ N0 and everyx ∈ X and we haveAx ∈ Y for all x ∈ X. The matrix domainXA

of an infinite matrixA in sequence spaceX is defined by

XA = {x = (xk) ∈ w : Ax ∈ X} (2.2)

which is a sequence space. The approach is constructing a new sequence space by
means of the matrix domain of a particular limitation method has recently been em-
ployed by several authors, see for instance [4-6]. A sequence spaceX is calledFK
space if it is a complete linear metric space with continuous coordinatespn : X → R
(n ∈ N0), whereR denotes the real field andpn(x) = xn for all x = (xk) ∈ X and
everyn ∈ N0. A BK space is a normedFK space, that is, aBK space is a Banach
space with continuous coordinates. The space`p (1 ≤ p < ∞) is BK space with
‖x‖p = (

∑∞
k=0 |xk|p)1/p andc0, c and`∞ are BK spaces with‖x‖∞ = supk |xk| .

The following lemma (known as the Toeplitz Theorem) contains necessary and suf-
ficient condition for regularity of a matrix.

Lemma 2.1 ([7, Lemma 2.2]). Matrix A = (ank)
∞
n,k=1 is regular if and only if the

following three conditions hold:
(1) There existsM > 0 such that for everyn = 1, 2, ... the following inequality

holds:
∞∑

k=1

|ank| ≤ M ;

(2) lim
n→∞

ank = 0 for everyk = 1, 2, ...;

(3) lim
n→∞

∑∞
k=1 ank = 1.

Let (qk) be a sequence of positive numbers and

Qn =
n∑

k=1

qk; (n ≥ 1) .
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Then the matrixRq = (rq
nk) of the Riesz mean is given by

rq
nk =

{ qk

Qn
(1 ≤ k ≤ n)

0 (k > n) ,

It is known that the Riesz matrixRq is a Toeplitz matrix if and only ifQn →∞, as
n →∞ [8].

Now, we define the Fibonacci matrixF = (fnk)
∞
n,k=1 by

fnk =

{
f2

k

fnfn+1
(1 ≤ k ≤ n)

0 (k > n).

that is,

F =


1 0 0 0 0 0 ...
1
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1
2

0 0 0 0 ...
1
6

1
6

4
6

0 0 0 ...
1
15

1
15

4
15

9
15

0 0 ...
1
40

1
40

4
40

9
40

25
40

0 ..
.
..

.

..
.
..

.

..
.
..

.

..
...

 .

It is obvious that the matrixF is a triangle, that isfnn 6= 0 andfnk = 0 for k > n (
n = 1, 2, 3, ...). Also, it follows by Lemma 2.1 that the methodF is regular.

Throughout, letX denotes any of the classical sequence spaces`∞, c, c0 and `p

(1 ≤ p < ∞). Then the Fibonacci sequence spaceX(F ) is defined by

X(F ) = {x = (xk) ∈ w : y = (yk) ∈ X} ,

where the sequencey = (yk) is theF -transform of a sequencex = (xk), i.e,

yk = Fk(x) =
1

fkfk+1

k∑
j=1

f 2
j xj for all k ∈ N0. (2.3)

With the notation (2.2), we can redefine the spaceX(F ) as the matrix domain of the
triangleF in the spaceX, that is

X(F ) = XF . (2.4)

Theorem 2.2.The spaceX(F ) is aBK space with the norm given by

‖x‖X(F ) = ‖F (x)‖X = ‖y‖X =


sup

k
|yk| if X ∈ {`∞, c, c0}(

∞∑
k=1

|yk|p
)1/p

if X = `p; 1 ≤ p < ∞.
(2.5)

Proof. Since the matrixF is a triangle, we have the result by (2.5) and Theorem
4.3.12 of Wilansky [9, p.63].

Theorem 2.3. The sequence spaceX(F ) is isometrically isomorphic to the spaceX,
that is,X(F ) ∼= X.
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Proof. To prove this, we should show the existence of an isometric isomorphism
between the spacesX(F ) and X. Consider the transformationT defined, with the
notation of (2.3), fromX(F ) to X by x → y = Tx. Then, we haveTx = y = F (x) ∈
X for everyx ∈ X(F ). Also, the linearity ofT is trivial. Further, it is easy to see that
x = 0 wheneverTx = 0 and henceT is injective.

Furthermore, lety = (yk) ∈ X be given and then define the sequencex = (xk) by

xk =
fk+1

fk

yk −
fk−1

fk

yk−1; (k ∈ N0). (2.6)

Then, by using (2.3) and (2.6), we have for everyk ∈ N0 that

Fk(x) =
1

fkfk+1

k∑
j=1

f 2
j xj

=
1

fkfk+1

k∑
j=1

fj (fj+1yj − fj−1yj−1)

= yk.

This shows thatF (x) = y and, sincey ∈ X we obtain thatF (x) ∈ X. Thus, we
deduce thatx ∈ X(F ) andTx = y. Hence,T is surjective.

Moreover, for anyx ∈ X(F ), we have by (2.5) of Theorem 2.2 that

‖T (x)‖X = ‖y‖X = ‖F (x)‖X = ‖x‖X(F )

which shows thatT is norm preserving. Hence,T is isometry. Consequently, the
spacesX(F ) andX are isometrically isomorphic. This concludes the proof.

Lemma 2.4. Let{fn}∞n=1 be Fibonacci numbers sequences. Then we have

sup
k

(
f 2

k

∞∑
n=k

1

fnfn+1

)
< ∞.

Proof. This is a consequence of [5, Lemma 4.11] since the sequence
(

1
fnfn+1

)
is in

`1.

Theorem 2.5.The inclusionX ⊂ X(F ) holds.

It is clear that the inclusionsc0 ⊂ c0(F ) andc ⊂ c(F ) since the matrixF is a regular
matrix.

Now, letx = (xk) ∈ `∞. Then, there is a constantK > 0 such that|xk| ≤ K for all
k ∈ N0. Thus, we have for everyn ∈ N0 that

|Fn(x)| ≤ 1

fnfn+1

n∑
k=1

f 2
k |xk|

≤ K

fnfn+1

n∑
k=1

f 2
k = K
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which shows thatF (x) ∈ `∞. Therefore, we deduce thatx = (xk) ∈ `∞ implies
x = (xk) ∈ `∞(F ).

Finally, let 1 < p < ∞ and take anyx = (xk) ∈ `p. Then, for everyn ∈ N0, by
applying the Ḧolder’s inequality

|Fn(x)|p ≤

[
n∑

k=1

f 2
k

fnfn+1

|xk|

]p

(2.1)

≤

[
n∑

k=1

f 2
k

fnfn+1

|xk|

]p [ n∑
k=1

f 2
k

fnfn+1

]p−1

=
1

fnfn+1

n∑
k=1

f 2
k |xk|p .

Thus, by the fact in(2.7) that
∞∑

n=1

|Fn(x)|p ≤
∞∑

n=1

1

fnfn+1

n∑
k=1

f 2
k |xk|p

=
∞∑

n=1

|xk|p f 2
k

∞∑
n=k

1

fkfk+1

and hence

‖x‖p
`p(F ) ≤ K

∞∑
n=1

|xk|p = K ‖x‖p
`p

, (2.8)

whereK = supk [f 2
k

∑∞
n=k 1/fnfn+1] < ∞ by Lemma 2.4. This shows thatx ∈

`p(F ). Hence, we deduce that the inclusion`p ⊂ `p(F ) holds for1 < p < ∞. By the
similar discussions, it may be easily proved that the inequality (2.8) also holds in the
casep = 1 and so we omit the detail. This completes the proof.

Now, we show that the converse of Theorem 2.5 is also true. In [4], Mursaleen and
Noman have defined the matrixΛ = (λnk) by

λnk =

{
λk−λk−1

λn
(1 ≤ k ≤ n)

0 (k > n)
,

whereλ = (λk) is strictly increasing sequence of positive reals which tends to infinity,
that is

0 < λ1 < λ2 < ... and λk →∞ ask →∞.

If we takeλn = fnfn+1 (n ∈ N0) in the matrixΛ, thenF = Λ (λk − λk−1 = f 2
k for

everyk ∈ N0). Thus, we conclude the following result:

Theorem 2.6.The inclusionX(F ) ⊂ X holds.

Proof. Let λn = fnfn+1 (n ∈ N0). Then we have that

lim
n→∞

λn+1

λn

= lim
n→∞

fn+2

fn

= 1 + lim
n→∞

fn+1

fn

= 1 + ϕ > 1,



6 E.E . KARA AND M. BASARIR

whereϕ is the golden section, that is,ϕ = (1 +
√

5)/2. Hence, from [4, Corollary
4.7] and [5, Corollary 4.19],X(F ) ⊂ X for X ∈ {`p, c, c0}, where1 ≤ p ≤ ∞. This
completes the proof.

Corollary 2.7. The equalityX(F ) = X holds.

Proof. This is an immediate consequence of Theorems 2.5 and 2.6.
Remark 2.8. We may note that if we putqk = f 2

k for all k, then the matrixF is the
special case of the matrixRq( Qn =

∑n
k=1 f 2

k = fnfn+1 ).

3. CONCLUSION

Consequently, the Fibonacci matrixF is a regular matrix which is a special case of
Riesz matrix. Also,XF = X for X ∈ {`p, c, c0}, where1 ≤ p ≤ ∞. One can ask
if X is an arbitrary normed or paranormed space, does the equalityXF = X holds?
Morever, One can study the spectrum of the matrixF in the classical sequence spaces.
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