تعداد نشریات | 30 |
تعداد شمارهها | 467 |
تعداد مقالات | 4,519 |
تعداد مشاهده مقاله | 7,144,860 |
تعداد دریافت فایل اصل مقاله | 5,334,672 |
Composition operators between growth spaces on circular and strictly convex domains in complex Banach spaces | ||
Caspian Journal of Mathematical Sciences | ||
مقاله 3، دوره 9، شماره 2، آذر 2020، صفحه 182-190 اصل مقاله (102.61 K) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22080/cjms.2020.15630.1370 | ||
نویسندگان | ||
shayesteh Rezaei* 1؛ Mostafa Hassanlou2 | ||
1Aligudarz Branch, Islamic Azad University | ||
2Khoy Faculty of Engineering, Urmia University, Urmia, Iran | ||
تاریخ دریافت: 12 بهمن 1397، تاریخ پذیرش: 11 اسفند 1398 | ||
چکیده | ||
Let $\Omega_X$ be a bounded, circular and strictly convex domain in a complex Banach space $X$, and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$. The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$ such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$ for some constant $C>0$, whenever $r_{\Omega_X}$ is the Minkowski functional on $\Omega_X$ and $\nu :[0,1)\rightarrow(0,\infty)$ is a nondecreasing, continuous and unbounded function. For complex Banach spaces $X$ and $Y$ and a holomorphic map $\varphi:\Omega_X\rightarrow\Omega_Y$, put $C_\varphi( f)=f\circ \varphi,f\in\mathcal{H}(\Omega_Y)$. We characterize those $\varphi$ for which the composition operator $ C_\varphi:\mathcal{A}^{\omega}(\Omega_Y)\rightarrow\mathcal{A}^{\nu}(\Omega_X)$ is a bounded or compact operator. | ||
کلیدواژهها | ||
Composition operator؛ Growth space؛ Circular domain | ||
آمار تعداد مشاهده مقاله: 290 تعداد دریافت فایل اصل مقاله: 272 |