تعداد نشریات | 30 |
تعداد شمارهها | 467 |
تعداد مقالات | 4,522 |
تعداد مشاهده مقاله | 7,145,322 |
تعداد دریافت فایل اصل مقاله | 5,334,979 |
Existence and uniqueness of solutions for neutral periodic integro-differential equations with infinite delay on time scale | ||
Caspian Journal of Mathematical Sciences | ||
مقاله 11، دوره 10، شماره 1، مهر 2021، صفحه 93-103 اصل مقاله (108.48 K) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22080/cjms.2021.19819.1552 | ||
نویسندگان | ||
Haitham Makhzoum* 1؛ Abdelhamid S Elmabrok2؛ Rafik Elmansouri3 | ||
1Department of mathematic, Faculty of Science, University of Benghazi, Benghazi, Libya | ||
2Department of Mathematics, Faculty of Science, University of Benghazi, Benghazi, Libya | ||
3College of Electrical and Electronic Technology, Benghazi, Libya | ||
تاریخ دریافت: 30 شهریور 1399، تاریخ بازنگری: 26 آذر 1399، تاریخ پذیرش: 21 دی 1399 | ||
چکیده | ||
In this article, we will shed the light on the following nonlinear neutral dynamic equation with infinite delay \begin{eqnarray*}\label{e1} {x(t)}^{\Delta }=&& G(t,\ x\left(t\right),x\left(t-\tau \left(t\right)\right))+{Q(t,x(t-\tau (t)))}^{\Delta }\\ &&+\int^t_{-\infty }{\left(\sum^p_{i=1}{D_i\left(t,s\right)}\right)f\left(x\left(s\right)\right)}\Delta s, \end{eqnarray*} where $\mathbb{T}$ is a periodic time scale. Using the fixed-point method by Krasnoselskii, we will show that equation has a periodic solution. In addition, we will prove this solution is unique by using the contraction mapping principle. | ||
کلیدواژهها | ||
Fixed point؛ infinite delay؛ time scale؛ periodic solution | ||
آمار تعداد مشاهده مقاله: 227 تعداد دریافت فایل اصل مقاله: 316 |