تعداد نشریات | 30 |
تعداد شمارهها | 467 |
تعداد مقالات | 4,519 |
تعداد مشاهده مقاله | 7,144,870 |
تعداد دریافت فایل اصل مقاله | 5,334,683 |
Superconvergence and linear stability of multistep collocation method applied to Volterra integral equations with delay function θ(t) | ||
Caspian Journal of Mathematical Sciences | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 23 اسفند 1402 | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22080/cjms.2021.22283.1605 | ||
نویسندگان | ||
Parviz Darania* ؛ fatemeh sotoudehmaram | ||
Department of Mathematics, Faculty of Science, Urmia University, P.O.Box 165, Urmia-Iran | ||
تاریخ دریافت: 21 شهریور 1400، تاریخ بازنگری: 03 دی 1400، تاریخ پذیرش: 08 دی 1400 | ||
چکیده | ||
The main purpose of this paper is to propose the superconvergence and linear stability analysis of multistep collocation method which depend on r fixed number of previous time steps and m collocation points to solve the Volterra integral equations of the second kind with nonlinear and non-vanishing delay. P. Darania and et al., constructed the multistep collocation method to solve a general class of nonlinear delay integral equations including two types of linear and nonlinear lag function θ(t) and investigated the convergence analysis of this method. This method have uniform order m + r for any choice of collocation parameters. In this paper we shows that, the constructed method have a high uniform order of superconvergence (2m + 2r − 1) together with strong stability properties. Numerical examples are presented to confirm this theoretical predictiont. | ||
کلیدواژهها | ||
Functional equations؛ Volterra functional integral equations؛ Multistep collocation method؛ Superconvergence؛ Linear stability analysis | ||
آمار تعداد مشاهده مقاله: 64 |