- Fendzi-Donfack, E., Baduidana, M., Fotsa-Ngaffo, F., & Kenfack-Jiotsa, A. (2023). Construction of abundant solitons in a coupled nonlinear pendulum lattice through two discrete distinct techniques. Results in Physics, 52, 106783. doi:10.1016/j.rinp.2023.106783.
- Fu, H., Jiang, J., Hu, S., Rao, J., & Theodossiades, S. (2023). A multi-stable ultra-low frequency energy harvester using a nonlinear pendulum and piezoelectric transduction for self-powered sensing. Mechanical Systems and Signal Processing, 189, 110034. doi:10.1016/j.ymssp.2022.110034.
- Akhtaruzzaman, M., & Shafie, A. A. (2010). Modeling and control of a rotary inverted pendulum using various methods, comparative assessment and result analysis. 2010 IEEE International Conference on Mechatronics and Automation, ICMA 2010, 1342–1347. doi:10.1109/ICMA.2010.5589450.
- Gao, Z., Cecati, C., & Ding, S. X. (2015). A survey of fault diagnosis and fault-tolerant techniques-part I: Fault diagnosis with model-based and signal-based approaches. IEEE Transactions on Industrial Electronics, 62(6), 3757–3767. doi:10.1109/TIE.2015.2417501.
- Gueddi, I., Nasri, O., Benothman, K., & Dague, P. (2017). Fault Detection and Isolation of spacecraft thrusters using an extended principal component analysis to interval data. International Journal of Control, Automation and Systems, 15(2), 776–789. doi:10.1007/s12555-015-0258-x.
- Deng, F., Liu, C., & Chen, Z. (2023). Modular Multilevel Converters: Control, Fault Detection, and Protection. John Wiley & Sons, Hoboken, United States. doi:10.1002/9781119875635.
- Du, D., Sun, S., Cocquempot, V., & Zhao, H. (2024). H∞/H− fault detection observer design for nonlinear conformable fractional-order systems. Journal of Computational and Applied Mathematics, 441, 115711. doi:10.1016/j.cam.2023.115711.
- Zeghlache, S., Ghellab, M. Z., Djerioui, A., Bouderah, B., & Benkhoris, M. F. (2023). Adaptive fuzzy fast terminal sliding mode control for inverted pendulum-cart system with actuator faults. Mathematics and Computers in Simulation, 210, 207–234. doi:10.1016/j.matcom.2023.03.005.
- Veisi, A., & Delavari, H. (2023). Adaptive fractional backstepping intelligent controller for maximum power extraction of a wind turbine system. Journal of Renewable and Sustainable Energy, 15(6). doi:10.1063/5.0161571.
- Keijzer, T., Engelbrecht, J. A. A., Goupil, P., & Ferrari, R. M. G. (2023). A sliding mode observer approach to oscillatory fault detection in commercial aircraft. Control Engineering Practice, 141, 105719. doi:10.1016/j.conengprac.2023.105719.
- Delavari, H., & Veisi, A. (2024). A new robust nonlinear controller for fractional model of wind turbine based DFIG with a novel disturbance observer. Energy Systems, 15(2), 827–861. doi:10.1007/s12667-023-00566-3.
- Cao, F., Jia, F., & He, X. (2024). Input Design for Active Fault Detection: Reconciling System Control Objectives. IEEE Transactions on Cybernetics, 54(7), 3931–3942. doi:10.1109/TCYB.2023.3331971.
- Veisi, A., Delavari, H., & Shanaghi, F. (2023). Maximum Power Point Tracking in a Photovoltaic System by Optimized Fractional Nonlinear Controller. 2023 8th International Conference on Technology and Energy Management (ICTEM). doi:10.1109/ictem56862.2023.10083639.
- Veisi, A., & Delavari, H. (2023). Adaptive optimized fractional order control of doubly‐fed induction generator (DFIG) based wind turbine using disturbance observer. Environmental Progress & Sustainable Energy, 43(2). doi:10.1002/ep.14087.
- Veisi, A., & Delavari, H. (2021). Adaptive Fractional order Control of Photovoltaic Power Generation System with Disturbance Observer. 2021 7th International Conference on Control, Instrumentation and Automation (ICCIA). doi:10.1109/iccia52082.2021.9403598.
- DDelavari, H., & Veisi, A. (2021). Robust Control of a Permanent Magnet Synchronous Generators based Wind Energy Conversion. 2021 7th International Conference on Control, Instrumentation and Automation (ICCIA). doi:10.1109/iccia52082.2021.9403590.
- Golmankhaneh, A. K. (2022). Fractal Calculus And Its Applications: Fα-calculus. In Fractal Calculus And Its Applications: Fα-calculus. World Scientific. doi:10.1142/12988.
- Huang, J., Zhang, T., Fan, Y., & Sun, J. Q. (2019). Control of Rotary Inverted Pendulum Using Model-Free Backstepping Technique. IEEE Access, 7, 96965–96973. doi:10.1109/ACCESS.2019.2930220.
- Shtessel, Y., Edwards, C., Fridman, L., & Levant, A. (2014). Sliding Mode Control and Observation. Control Engineering, Springer, New York, United States. doi:10.1007/978-0-8176-4893-0.
- Zhang, X., He, J., Ma, H., Ma, Z., & Ge, X. (2023). Stability Enhancement Methods of Inverters Based on Lyapunov Function, Predictive Control, and Reinforcement Learning, Springer Nature, Singapore. doi:10.1007/978-981-19-7191-4.
- Björnsson, H. (2023). Lyapunov Functions for Stochastic Systems: Theory and Numerics. PhD Thesis, University of Iceland, Reykjavík, Iceland.
- Nath, K., & Dewan, L. (2017). Control of a rotary inverted pendulum via adaptive techniques. 2017 International Conference on Emerging Trends in Computing and Communication Technologies (ICETCCT). doi:10.1109/icetcct.2017.8280315.
|