In this study, an Active tendon control system is employed to reduce the dynamic responses of a two-dimensional frame. Different placement or arrangement of active tendons generates different structural responses. By means of optimization methods, the best placement and arrangement of controllers would be found, which leads to minimum dynamic responses and, eventually, the least cost of fabrication. To determine the number and arrangement of controllers in the two-dimensional frame that was considered both shear and non-shear manner, the genetic algorithm has been used, hence; to measure the controller force, four different algorithms, including Classic, Instantaneous, modal, and pole assignment has been applied, and a comparison has been carried out about the influence of these algorithms as the control algorithms. Furthermore, the time delay effect of the control force on the optimized number and locations of the controllers has been explored. Moreover, the effect of different responses of the structure, for instance, peak inter-story drift, absolute peak acceleration, or peak displacement as the variable of optimization equations, has been demonstrated. Besides, by examining different earthquake time histories and various levels of peak ground acceleration, in the structure case study, the influence of different dynamic loads was surveyed |
- Rama Mohan Rao, A., & Sivasubramanian, K. (2008). Optimal placement of actuators for active vibration control of seismic excited tall buildings using a multiple start guided neighbourhood search (MSGNS) algorithm. Journal of Sound and Vibration, 311(1–2), 133–159. doi:10.1016/j.jsv.2007.08.031.
- Pantelides, C. P., & Cheng, F. Y. (1990). Optimal placement of controllers for seismic structures. Engineering Structures, 12(4), 254–262. doi:10.1016/0141-0296(90)90024-m.
- Li, Q. S., Liu, D. K., Fang, J. Q., & Tam, C. M. (2000). Multi-level optimal design of buildings with active control under winds using genetic algorithms. Journal of Wind Engineering and Industrial Aerodynamics, 86(1), 65–86. doi:10.1016/S0167-6105(00)00004-0.
- Li, Q. S., Liu, D. K., Tang, J., Zhang, N., & Tam, C. M. (2004). Combinatorial optimal design of number and positions of actuators in actively controlled structures using genetic algorithms. Journal of Sound and Vibration, 270(4–5), 611–624. doi:10.1016/S0022-460X(03)00130-5.
- Liu, D. K., Yang, Y. L., & Li, Q. S. (2003). Optimum positioning of actuators in tall buildings using genetic algorithm. Computers and Structures, 81(32), 2823–2827. doi:10.1016/j.compstruc.2003.07.002.
- Gao, W., Chen, J. J., Ma, H. B., & Ma, X. S. (2003). Optimal placement of active bars in active vibration control for piezoelectric intelligent truss structures with random parameters. Computers and Structures, 81(1), 53–60. doi:10.1016/S0045-7949(02)00331-0.
- Amini, F., & Tavassoli, M. R. (2005). Optimal structural active control force, number and placement of controllers. Engineering Structures, 27(9), 1306–1316. doi:10.1016/j.engstruct.2005.01.006.
- Liu, W., Hou, Z., & Demetriou, M. A. (2006). A computational scheme for the optimal sensor/actuator placement of flexible structures using spatial ℋ2 measures. Mechanical Systems and Signal Processing, 20(4), 881–895. doi:10.1016/j.ymssp.2005.08.030.
- Güney, M., & Eşkinat, E. (2008). Optimal actuator and sensor placement in flexible structures using closed-loop criteria. Journal of Sound and Vibration, 312(1–2), 210–233. doi:10.1016/j.jsv.2007.10.051.
- Nandy, A., Chakraborty, D., & Shah, M. S. (2019). Optimal Sensors/Actuators Placement in Smart Structure Using Island Model Parallel Genetic Algorithm. International Journal of Computational Methods, 16(6). doi:10.1142/S0219876218400182.
- Wang, Z., & Li, T. (2014). Optimal Piezoelectric sensor/actuator placement of cable net structures using H2-norm measures. JVC/Journal of Vibration and Control, 20(8), 1257–1268. doi:10.1177/1077546312472927.
- Vashist, S. K., & Chhabra, D. (2014). Optimal placement of piezoelectric actuators on plate structures for active vibration control using genetic algorithm. Active and Passive Smart Structures and Integrated Systems 2014, 71. doi:10.1117/12.2044904.
- Bruant, I., & Proslier, L. (2016). Optimal location of piezoelectric actuators for active vibration control of thin axially functionally graded beams. International Journal of Mechanics and Materials in Design, 12(2), 173–192. doi:10.1007/s10999-015-9297-y.
- Soong, T. T., & Spencer, B. F. (1992). Active Structural Control: Theory and Practice . Journal of Engineering Mechanics, 118(6), 1282–1285. doi:10.1061/(asce)0733-9399(1992)118:6(1282).
- Yang, J.N., Akbarpour, A., Ghaemmaghami, P. (1987). Optimal Control Algorithms for Earthquake-Excited Building Structures. Structural Control, Springer, Dordrecht, Netherlands. doi:10.1007/978-94-009-3525-9_47.
- Fang, J. Q., Li, Q. S., & Jeary, A. P. (2003). Modified independent modal space control of m.d.o.f. systems. Journal of Sound and Vibration, 261(3), 421–441. doi:10.1016/S0022-460X(02)01085-4.
- Arar, A. R. S., & Sawan, M. E. (1993). Optimal pole placement with prescribed eigenvalues for continuous systems. Journal of the Franklin Institute, 330(5), 985–994. doi:10.1016/0016-0032(93)90089-D.
- Cai, G. P., Huang, J. Z., & Yang, S. X. (2003). An optimal control method for linear systems with time delay. Computers and Structures, 81(15), 1539–1546. doi:10.1016/S0045-7949(03)00146-9.
- Haupt, R. L., & Haupt, S. E. (2003). Practical Genetic Algorithms. John Wiley & Sons, Hoboken, United States. doi:10.1002/0471671746.
- ASCE/SEI 7-10. (2013). Minimum Design Loads for Buildings and Other Structures. American Society of Civil Engineers (ASCE), Reston, United States. doi: 1061/9780784412916.
- ANSI / AISC 360-16. (2016). Specification for Structural Steel Buildings. American Institute of Steel Construction (AISC), Chicago, United States.
- Clough, R. W., & Penzien, J. (1995). Dynamics of structures. McGraw-Hill College, New York, United States.
|