- Heisenberg, W., & Euler, H. (1936). Folgerungen aus der Diracschen Theorie des Positrons. Zeitschrift Für Physik, 98(11–12), 714–732. doi:10.1007/BF01343663.
- Schwinger, J. (1951). On gauge invariance and vacuum polarization. Physical Review, 82(5), 664–679. doi:10.1103/PhysRev.82.664.
- Heydarzade, Y., Moradpour, H., & Darabi, F. (2017). Black hole solutions in Rastall theory. Canadian Journal of Physics, 95(12), 1253–1256. doi:10.1139/cjp-2017-0254.
- Ibrahim, A. I., Safi-Harb, S., Swank, J. H., Parke, W., Zane, S., & Turolla, R. (2002). Discovery of Cyclotron Resonance Features in the Soft Gamma Repeater SGR 1806−20. The Astrophysical Journal, 574(1), L51–L55. doi:10.1086/342366.
- Mosquera Cuesta, H. J., & Salim, J. M. (2004). Non-linear electrodynamics and the gravitational redshift of highly magnetized neutron stars. Monthly Notices of the Royal Astronomical Society, 354(4), 55– 59. doi:10.1111/j.1365-2966.2004.08375.x.
- Ayon-Beato, E., & Garcia, A. (1999). Non-Singular Charged Black Hole Solution for Non-Linear Source. General Relativity and Gravitation, 31(5), 629–633. doi:10.1023/a:1026640911319.
- De Lorenci, V. A., Klippert, R., Novello, M., & Salim, J. M. (2002). Nonlinear electrodynamics and FRW cosmology. Physical Review D, 65(6), 63501. doi:10.1103/PhysRevD.65.063501.
- Dymnikova, I. (2004). Regular electrically charged vacuum structures with de Sitter centre in nonlinear electrodynamics coupled to general relativity. Classical and Quantum Gravity, 21(18), 4417–4428. doi:10.1088/0264-9381/21/18/009.
- Corda, C., & Cuesta, H. J. M. (2010). Removing black hole singularities with nonlinear electrodynamics. Modern Physics Letters A, 25(28), 2423–2429. doi:10.1142/S0217732310033633.
- Born, M., & Infeld, L. (1933). Foundations of the new field theory. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 144(852), 425–451. doi:10.1098/rspa.1934.0059.
- Hassaïne, M., & Martínez, C. (2007). Higher-dimensional black holes with a conformally invariant Maxwell source. Physical Review D - Particles, Fields, Gravitation and Cosmology, 75(2), 27502. doi:10.1103/PhysRevD.75.027502.
- Maeda, H., Hassaïne, M., & Martínez, C. (2009). Lovelock black holes with a nonlinear Maxwell field. Physical Review D - Particles, Fields, Gravitation and Cosmology, 79(4), 44012. doi:10.1103/PhysRevD.79.044012.
- Eslam Panah, B. (2021). Can the power Maxwell nonlinear electrodynamics theory remove the singularity of electric field of point-like charges at their locations? Epl, 134(2), 20005. doi:10.1209/0295-5075/134/20005.
- Mazharimousavi, S. H. (2022). Power Maxwell nonlinear electrodynamics and the singularity of the electric field. Modern Physics Letters A, 37(25), 2250170. doi:10.1142/S021773232250170X.
- Bandos, I., Lechner, K., Sorokin, D., & Townsend, P. K. (2020). Nonlinear duality-invariant conformal extension of Maxwell’s equations. Physical Review D, 102(12), 121703. doi:10.1103/PhysRevD.102.121703.
- Kosyakov, B. P. (2020). Nonlinear electrodynamics with the maximum allowable symmetries. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 810, 135840. doi:10.1016/j.physletb.2020.135840.
- Kruglov, S. I. (2021). On generalized ModMax model of nonlinear electrodynamics. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 822, 136633. doi:10.1016/j.physletb.2021.136633.
- Kuzenko, S. M., & Raptakis, E. S. N. (2021). Duality-invariant superconformal higher-spin models. Physical Review D, 104(12). doi:10.1103/physrevd.104.125003.
- Avetisyan, Z., Evnin, O., & Mkrtchyan, K. (2021). Democratic Lagrangians for Nonlinear Electrodynamics. Physical Review Letters, 127(27), 271601. doi:10.1103/PhysRevLett.127.271601.
- Cano, P. A., & Murcia, Á. (2021). Duality-invariant extensions of Einstein-Maxwell theory. Journal of High Energy Physics, 2021(8). doi:10.1007/jhep08(2021)042.
- Zhang, M., & Jiang, J. (2021). Conformal scalar NUT-like dyons in conformal electrodynamics. Physical Review D, 104(8), 84094. doi:10.1103/PhysRevD.104.084094.
- Flores-Alonso, D., Linares, R., & Maceda, M. (2021). Nonlinear extensions of gravitating dyons: from NUT wormholes to Taub-Bolt instantons. Journal of High Energy Physics, 2021(9), 1–23. doi:10.1007/JHEP09(2021)104.
- Bordo, A. B., Kubizňák, D., & Perche, T. R. (2021). Taub-NUT solutions in conformal electrodynamics. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 817, 136312. doi:10.1016/j.physletb.2021.136312.
- Bokulić, A., Smolić, I., & Jurić, T. (2022). Constraints on singularity resolution by nonlinear electrodynamics. Physical Review D, 106(6), 64020. doi:10.1103/PhysRevD.106.064020.
- Lechner, K., Marchetti, P., Sainaghi, A., & Sorokin, D. (2022). Maximally symmetric nonlinear extension of electrodynamics and charged particles. Physical Review D, 106(1), 16009. doi:10.1103/PhysRevD.106.016009.
- Barrientos, J., Cisterna, A., Kubizňák, D., & Oliva, J. (2022). Accelerated black holes beyond Maxwell’s electrodynamics. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 834, 137447. doi:10.1016/j.physletb.2022.137447.
- Nastase, H. (2022). Coupling the precursor of the most general theory of electromagnetism invariant under duality and conformal invariance with scalars, and BIon-type solutions. Physical Review D, 105(10), 105024. doi:10.1103/PhysRevD.105.105024.
- Babaei-Aghbolagh, H., Babaei Velni, K., Yekta, D. M., & Mohammadzadeh, H. (2022). Emergence of non-linear electrodynamic theories from TT¯-like deformations. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 829, 137079. doi:10.1016/j.physletb.2022.137079.
- Babaei-Aghbolagh, H., Velni, K. B., Yekta, D. M., & Mohammadzadeh, H. (2022). Manifestly SL(2, R) Duality-Symmetric Forms in ModMax Theory. Journal of High Energy Physics, 2022(12), 1–16. doi:10.1007/JHEP12(2022)147.
- Ferko, C., Smith, L., & Tartaglino-Mazzucchelli, G. (2022). On current-squared flows and ModMax theories. SciPost Physics, 13(2), 12. doi:10.21468/SciPostPhys.13.2.012.
- Nomura, K., & Yoshida, D. (2022). Quasinormal modes of charged black holes with corrections from nonlinear electrodynamics. Physical Review D, 105(4), 44006. doi:10.1103/PhysRevD.105.044006.
- Pantig, R. C., Mastrototaro, L., Lambiase, G., & Övgün, A. (2022). Shadow, lensing, quasinormal modes, greybody bounds and neutrino propagation by dyonic ModMax black holes. European Physical Journal C, 82(12), 1–25. doi:10.1140/epjc/s10052-022-11125-y.
- Panah, B. E. (2024). Analytic Electrically Charged Black Holes in F(R)-ModMax Theory. Progress of Theoretical and Experimental Physics, 2024(2), 023 01. doi:10.1093/ptep/ptae012.
- Guzman-Herrera, E., & Breton, N. (2024). Light propagation in the vicinity of the ModMax black hole. Journal of Cosmology and Astroparticle Physics, 2024(1), 41. doi:10.1088/1475-7516/2024/01/041.
- Bañados, M., Teitelboim, C., & Zanelli, J. (1992). Black hole in three-dimensional spacetime. Physical Review Letters, 69(13), 1849–1851. doi:10.1103/physrevlett.69.1849.
- Witten, E. (2014). Anti-De Sitter Space, Thermal Phase Transition, And Confinement in Gauge Theories. The Oskar Klein Memorial Lectures, 389–419. doi:10.1142/9789814571616_0023.
- Lee, H. W., Myung, Y. S., & Kim, J. Y. (1999). Nonpropagation of tachyon on the BTZ black hole in type OB string theory. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 466(2–4), 211–215. doi:10.1016/S0370-2693(99)01121-1.
- Larrãaga, A. (2008). On thermodynamical relation between rotating charged BTZ black holes and effective string theory. Communications in Theoretical Physics, 50(6), 1341–1344. doi:10.1088/0253-6102/50/6/19.
- Henderson, L. J., Hennigar, R. A., Mann, R. B., Smith, A. R. H., & Zhang, J. (2020). Anti-Hawking phenomena. Physics Letters B, 809, 135732. doi:10.1016/j.physletb.2020.135732.
- Campos, L. de S., & Dappiaggi, C. (2021). The anti-Hawking effect on a BTZ black hole with Robin boundary conditions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 816, 136198. doi:10.1016/j.physletb.2021.136198.
- Witten, E. (2007). Three-dimensional gravity revisited. arXiv preprint arXiv:0706.3359. doi:10.48550/arXiv.0706.3359.
- Emparan, R., Horowitz, G. T., & Myers, R. C. (2000). Exact description of black holes on branes. Journal of High Energy Physics, 4(1), 1–23. doi:10.1088/1126-6708/2000/01/007.
- Carlip, S. (2005). Conformal field theory, (2 + 1)-dimensional gravity and the BTZ black hole. Classical and Quantum Gravity, 22(12), 85. doi:10.1088/0264-9381/22/12/R01.
- Frodden, E., Geiller, M., Noui, K., & Perez, A. (2013). Statistical entropy of a BTZ black hole from loop quantum gravity. Journal of High Energy Physics, 2013(5), 1–17. doi:10.1007/JHEP05(2013)139.
- Caputa, P., Jejjala, V., & Soltanpanahi, H. (2014). Entanglement entropy of extremal BTZ black holes. Physical Review D - Particles, Fields, Gravitation and Cosmology, 89(4), 46006. doi:10.1103/PhysRevD.89.046006.
- Jurić, T., & Samsarov, A. (2016). Entanglement entropy renormalization for the noncommutative scalar field coupled to classical BTZ geometry. Physical Review D, 93(10), 104033. doi:10.1103/PhysRevD.93.104033.
- Emparan, R., Frassino, A. M., & Way, B. (2020). Quantum BTZ black hole. Journal of High Energy Physics, 2020(11), 1–43. doi:10.1007/JHEP11(2020)137.
- Germani, C., & Procopio, G. P. (2006). Two-dimensional quantum black holes, branes in Banados-Teitelboim-Zanelli spacetime, and holography. Physical Review D - Particles, Fields, Gravitation and Cosmology, 74(4), 44012. doi:10.1103/PhysRevD.74.044012.
- de la Fuente, A., & Sundrum, R. (2014). Holography of the BTZ black hole, inside and out. Journal of High Energy Physics, 2014(9), 1–56. doi:10.1007/JHEP09(2014)073.
- Ziogas, V. (2015). Holographic mutual information in global Vaidya-BTZ spacetime. Journal of High Energy Physics, 2015(9), 1–31. doi:10.1007/JHEP09(2015)114.
- Cárdenas, M., Fuentealba, O., & Martínez, C. (2014). Three-dimensional black holes with conformally coupled scalar and gauge fields. Physical Review D - Particles, Fields, Gravitation and Cosmology, 90(12), 124072. doi:10.1103/PhysRevD.90.124072.
- Zou, D. C., Liu, Y., Wang, B., & Xu, W. (2014). Thermodynamics of rotating black holes with scalar hair in three dimensions. Physical Review D - Particles, Fields, Gravitation and Cosmology, 90(10), 104035. doi:10.1103/PhysRevD.90.104035.
- Gwak, B., & Lee, B. H. (2016). Thermodynamics of three-dimensional black holes via charged particle absorption. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 755, 324–327. doi:10.1016/j.physletb.2016.02.028.
- Alsaleh, S. (2017). Thermodynamics of BTZ black holes in gravity’s rainbow. International Journal of Modern Physics A, 32(15), 1750076. doi:10.1142/S0217751X17500762.
- Gupta, K. S., Jurić, T., & Samsarov, A. (2017). Noncommutative duality and fermionic quasinormal modes of the BTZ black hole. Journal of High Energy Physics, 2017(6), 1–26. doi:10.1007/JHEP06(2017)107.
- Lemos, J. P. S., Minamitsuji, M., & Zaslavskii, O. B. (2017). Thermodynamics of extremal rotating thin shells in an extremal BTZ spacetime and the extremal black hole entropy. Physical Review D, 95(4), 44003. doi:10.1103/PhysRevD.95.044003.
- Panah, B. E., Hendi, S. H., Panahiyan, S., & Hassaine, M. (2018). BTZ dilatonic black holes coupled to Maxwell and Born-Infeld electrodynamics. Physical Review D, 98(8), 84006. doi:10.1103/PhysRevD.98.084006.
- Nashed, G. G. L., & Capozziello, S. (2018). Charged anti-de Sitter BTZ black holes in Maxwell- f (T) gravity. International Journal of Modern Physics A, 33(13), 1850076. doi:10.1142/S0217751X18500768.
- Hong, S. T., Kim, Y. W., & Park, Y. J. (2019). Local free-fall temperatures of charged BTZ black holes in massive gravity. Physical Review D, 99(2), 24047. doi:10.1103/PhysRevD.99.024047.
- Mu, B., Tao, J., & Wang, P. (2020). Free-fall rainbow BTZ black hole. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 800, 135098. doi:10.1016/j.physletb.2019.135098.
- Xu, Z. M., Wu, B., & Yang, W. L. (2020). Diagnosis inspired by the thermodynamic geometry for different thermodynamic schemes of the charged BTZ black hole. European Physical Journal C, 80(10), 1–10. doi:10.1140/epjc/s10052-020-08563-x.
- Cañate, P., Magos, D., & Breton, N. (2020). Nonlinear electrodynamics generalization of the rotating BTZ black hole. Physical Review D, 101(6), 64010. doi:10.1103/PhysRevD.101.064010.
- Huang, Y., & Tao, J. (2022). Thermodynamics and phase transition of BTZ black hole in a cavity. Nuclear Physics B, 982, 115881. doi:10.1016/j.nuclphysb.2022.115881.
- Eslam Panah, B. (2023). Charged Accelerating BTZ Black Holes. Fortschritte Der Physik, 71(8–9), 2300012. doi:10.1002/prop.202300012.
- Karakasis, T., Koutsoumbas, G., & Papantonopoulos, E. (2023). Black holes with scalar hair in three dimensions. Physical Review D, 107(12), 124047. doi:10.1103/PhysRevD.107.124047.
- Panah, B. E., Khorasani, M., & Sedaghat, J. (2023). Three-dimensional accelerating AdS black holes in F(R) gravity. European Physical Journal Plus, 138(8), 1–10. doi:10.1140/epjp/s13360-023-04339-w.
- Cvetič, M., & Gubser, S. S. (1999). Phases of R-charged black holes, spinning branes and strongly coupled gauge theories. Journal of High Energy Physics, 3(4), 24. doi:10.1088/1126-6708/1999/04/024.
- Caldarelli, M. M., Cognola, G., & Klemm, D. (2000). Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories. Classical and Quantum Gravity, 17(2), 399–420. doi:10.1088/0264-9381/17/2/310.
|