تعداد نشریات | 30 |
تعداد شمارهها | 467 |
تعداد مقالات | 4,522 |
تعداد مشاهده مقاله | 7,145,310 |
تعداد دریافت فایل اصل مقاله | 5,334,972 |
Initial Lucas polynomial coefficient bounds for bi-Bazilevi\v{c} functions | ||
Caspian Journal of Mathematical Sciences | ||
دوره 13، شماره 2 - شماره پیاپی 26، 2024، صفحه 331-343 اصل مقاله (153.49 K) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22080/cjms.2024.27503.1702 | ||
نویسندگان | ||
Şahsene Altınkaya* 1؛ Nagamangala Sathyananda Tejas2؛ Dasanur Shivanna Raju3؛ Nanjundan Magesh4 | ||
1uludag university | ||
2Department of Mathematics, The National Institute of Engineering, Mysore - 570018, India | ||
3Visvesvaraya Technological University, Belagavi - 590018, India | ||
41Post-Graduate and Research Department of Mathematics, Government Arts College for Men Krishnagiri 635001, Tamilnadu, India. | ||
تاریخ دریافت: 07 مرداد 1403، تاریخ بازنگری: 13 مهر 1403، تاریخ پذیرش: 14 مهر 1403 | ||
چکیده | ||
Our current investigation is primarily motivated by the application of special polynomials in Geometric Function Theory (GFT). This paper aims to utilize (M,N)-Lucas polynomials to estimate the initial coefficient bounds for a subclass of bi-univalent functions consisting of normalized analytic functions. We then derive the famous Fekete-Szegö inequality estimate. We also establish connections between our results and those examined in previous investigations. | ||
کلیدواژهها | ||
Bi-univalent function؛ Bazilevic function؛ Fekete-Szegö estimate؛ Lucas polynomials | ||
آمار تعداد مشاهده مقاله: 173 تعداد دریافت فایل اصل مقاله: 115 |