تعداد نشریات | 31 |
تعداد شمارهها | 484 |
تعداد مقالات | 4,712 |
تعداد مشاهده مقاله | 7,347,593 |
تعداد دریافت فایل اصل مقاله | 5,492,699 |
Solving Inverse Optimization Problems in Linear Programming: A Geometric and Algorithmic Approach | ||
Caspian Journal of Mathematical Sciences | ||
دوره 14، شماره 1 - شماره پیاپی 27، 2025، صفحه 62-71 اصل مقاله (140.61 K) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22080/cjms.2024.28094.1729 | ||
نویسنده | ||
Zohreh Akbari* | ||
Department of Applied Mathematics, University of Mazandaran, Babolsar, Iran | ||
تاریخ دریافت: 03 آذر 1403، تاریخ پذیرش: 14 آذر 1403 | ||
چکیده | ||
This paper addresses the inverse optimization problem for linear programming, focusing on determining a cost vector that ensures a pre-specified solution is optimal. Two approaches are presented: (i) using the Karush-Kuhn-Tucker (KKT) conditions, and (ii) a geometric perspective leveraging first-order necessary conditions. The latter method results in a convex quadratic programming problem, solved efficiently using the gradient projection method. Numerical experiments, including a complex resource allocation problem, validate the proposed approach. This study extends the theory and application of inverse optimization across logistics, resource management, and supply chain optimization. | ||
کلیدواژهها | ||
Inverse optimization؛ Linear programming؛ Gradient projection method | ||
آمار تعداد مشاهده مقاله: 35 تعداد دریافت فایل اصل مقاله: 11 |