- Rayathala, J., C, K. K., & P, V. (2022). Review on Alzheimer’s disease: past, present and future. Journal of Innovations in Applied Pharmaceutical Science (JIAPS), 28–31. doi:10.37022/jiaps.v7i1.274.
- Grossberg, G. T. (2003). Diagnosis and treatment of Alzheimer’s disease. Journal of Clinical Psychiatry, 64 (suppl 9), 3–6. doi:10.1212/wnl.64.12_suppl_3.s34.
- Edupuganti, V., Mardani, M., Vasanawala, S., & Pauly, J. (2021). Uncertainty Quantification in Deep MRI Reconstruction. IEEE Transactions on Medical Imaging, 40(1), 239–250. doi:10.1109/TMI.2020.3025065.
- Lohar, M. (2018). A survey on classification methods of brain MRI for Alzheimer’s disease. Journal of King Saud University - Computer and Information Sciences, 7(5), 339–348.
- Bottero, V., Powers, D., Yalamanchi, A., Quinn, J. P., & Potashkin, J. A. (2021). Key disease mechanisms linked to alzheimer’s disease in the entorhinal cortex. International Journal of Molecular Sciences, 22(8), 3915. doi:10.3390/ijms22083915.
- Sato, R., Kudo, K., Udo, N., Matsushima, M., Yabe, I., Yamaguchi, A., Tha, K. K., Sasaki, M., Harada, M., Matsukawa, N., Amemiya, T., Kawata, Y., Bito, Y., Ochi, H., & Shirai, T. (2022). A diagnostic index based on quantitative susceptibility mapping and voxel-based morphometry may improve early diagnosis of Alzheimer’s disease. European Radiology, 32(7), 4479–4488. doi:10.1007/s00330-022-08547-3.
- Huang, H., Zheng, S., Yang, Z., Wu, Y., Li, Y., Qiu, J., Cheng, Y., Lin, P., Lin, Y., Guan, J., Mikulis, D. J., Zhou, T., & Wu, R. (2023). Voxel-based morphometry and a deep learning model for the diagnosis of early Alzheimer’s disease based on cerebral gray matter changes. Cerebral Cortex, 33(3), 754–763. doi:10.1093/cercor/bhac099.
- Saha, C., Figley, C. R., Dastgheib, Z., Lithgow, B. J., & Moussavi, Z. (2024). Gray and white matter voxel-based morphometry of Alzheimer’s disease with and without significant cerebrovascular pathologies. Neuroscience Insights, 19. doi:10.1177/26331055231225657.
- Ghasemi, J., Ghaderi, R., Karami Mollaei, M. R., & Hojjatoleslami, S. A. (2013). A novel fuzzy Dempster-Shafer inference system for brain MRI segmentation. Information Sciences, 223, 205–220. doi:10.1016/j.ins.2012.08.026.
- Tavakoli, F., & Ghasemi, J. (2018). Brain MRI segmentation by combining different MRI modalities using Dempster- Shafer theory. IET Image Processing, 12(8), 1322–1330. doi:10.1049/iet-ipr.2017.0473.
- Razi, S., Karami Mollaei, M. R., & Ghasemi, J. (2019). A novel method for classification of BCI multi-class motor imagery task based on Dempster–Shafer theory. Information Sciences, 484, 14–26. doi:10.1016/j.ins.2019.01.053.
- Ray, D., Majumder, D. D., & Das, A. (2010). Synergistic Study of Alzheimer Diseased Brain MRI with PET and SPECT Images using Shape based Registration and Fuzzy-Dempster Shafer Evidence Accumulation Model. International Journal of Computer Applications, 12(7), 18–25. doi:10.5120/1691-2120.
- Dinov, I. D., Valentino, D., Shin, B. C., Konstantinidis, F., Hu, G., MacKenzie-Graham, A., Lee, E.-F., Shattuck, D., Ma, J., Schwartz, C., & Toga, A. W. (2006). LONI Visualization Environment. Journal of Digital Imaging, 19(2), 148–158. doi:10.1007/s10278-006-0266-8.
- Ding, X., Charnigo, R. J., Schmitt, F. A., Kryscio, R. J., & Abner, E. L. (2019). Evaluating trajectories of episodic memory in normal cognition and mild cognitive impairment: Results from ADNI. PLoS ONE, 14(2), 212435. doi:10.1371/journal.pone.0212435.
- Wyman, B. T., Harvey, D. J., Crawford, K., Bernstein, M. A., Carmichael, O., Cole, P. E., Crane, P. K., DeCarli, C., Fox, N. C., Gunter, J. L., Hill, D., Killiany, R. J., Pachai, C., Schwarz, A. J., Schuff, N., Senjem, M. L., Suhy, J., Thompson, P. M., … Weiner, M. (2012). Standardization of analysis sets for reporting results from ADNI MRI data. Alzheimer’s & Dementia, 9(3), 332–337. doi:10.1016/j.jalz.2012.06.004.
- Sambath Kumar, S., & Nandhini, M. (2022). Automated Classification of Alzheimer’s Disease Using MRI and Transfer Learning. Mobile Computing and Sustainable Informatics, Springer, Singapore. doi:10.1007/978-981-16-1866-6_47.
- Demšar, U., Harris, P., Brunsdon, C., Fotheringham, A. S., & McLoone, S. (2013). Principal Component Analysis on Spatial Data: An Overview. Annals of the Association of American Geographers, 103(1), 106–128. doi:10.1080/00045608.2012.689236.
- Sudharsan, M., & Thailambal, G. (2023). Alzheimer’s disease prediction using machine learning techniques and principal component analysis (PCA). Materials Today: Proceedings, 81, 182–190. doi:10.1016/j.matpr.2021.03.061.
- Khedher, L., Ramírez, J., Górriz, J. M., Brahim, A., & Segovia, F. (2015). Early diagnosis of Alzheimer׳s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images. Neurocomputing, 151, 139–150. doi:10.1016/j.neucom.2014.09.072.
- Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 71–86. doi:10.1162/jocn.1991.3.1.71.
- Álvarez, I., Górriz, J. M., Ramírez, J., Salas-Gonzalez, D., López, M., Puntonet, C. G., & Segovia, F. (2009). Alzheimer’s diagnosis using eigenbrains and support vector machines. Electronics Letters, 45(7), 342–343. doi:10.1049/el.2009.3415.
- Papoulis, A. (1984). Bayes’ theorem in statistics and Bayes’ theorem in statistics (reexamined). Probability, random variables, and stochastic processes (2nd Ed). McGraw-Hill, New York United States.
- Bhagyashree, S. R., & Sheshadri, H. S. (2018). Diagnosis of Alzheimer’s disease using Naive Bayesian Classifier. Neural Computing and Applications, 29(1), 123–132. doi:10.1007/s00521-016-2416-3.
- Han, J., Kamber, M., & Pei, J. (2011). Data Preprocessing. Data mining: Concepts and techniques (3rd). Morgan Kaufmann Series in Data Management Systems, Burlington, United States. doi:10.1016/b978-0-12-381479-1.00003-4
- Srivastava, S., Gupta, M. R., & Frigyik, B. A. (2007). Bayesian quadratic discriminant analysis. Journal of Machine Learning Research, 8(6), 1277–1305.
- Tharwat, A. (2016). Linear vs. quadratic discriminant analysis classifier: a tutorial. International Journal of Applied Pattern Recognition, 3(2), 145. doi:10.1504/ijapr.2016.079050.
- Shafer, G. (1976). A mathematical theory of evidence. Princeton university press, Princeton, United States. doi:10.1515/9780691214696.
- Du, Y.-W., & Zhong, J.-J. (2021). Generalized combination rule for evidential reasoning approach and Dempster–Shafer theory of evidence. Information Sciences, 547, 1201–1232. doi:10.1016/j.ins.2020.07.072.
- Halpern, J. Y., & Fagin, R. (1992). Two views of belief: belief as generalized probability and belief as evidence. Artificial Intelligence, 54(3), 275–317. doi:10.1016/0004-3702(92)90048-3.
- Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113. doi:10.1016/j.neuroimage.2007.07.007.
- Colloby, S. J., Elder, G. J., Rabee, R., O’Brien, J. T., & Taylor, J. (2016). Structural grey matter changes in the substantia innominata in Alzheimer’s disease and dementia with Lewy bodies: a DARTEL‐VBM study. International Journal of Geriatric Psychiatry, 32(6), 615–623. doi: 10.1002/gps.4500.
- Ghasemi, J., Karami Mollaei, M. R., Ghaderi, R., & Hojjatoleslami, A. (2012). Brain tissue segmentation based on spatial information fusion by Dempster-Shafer theory. Journal of Zhejiang University SCIENCE C, 13(7), 520–533. doi:10.1631/jzus.c1100288.
- Peng, Y., Kou, G., Chen, Z., & Shi, Y. (2004). Cross-Validation and Ensemble Analyses on Multiple-Criteria Linear Programming Classification for Credit Cardholder Behavior. Computational Science - ICCS 2004. ICCS 2004. Lecture Notes in Computer Science, vol 3039. Springer, Heidelberg, Germany. doi:10.1007/978-3-540-25944-2_120.
- Zu, C., Jie, B., Liu, M., Chen, S., Shen, D., Zhang, D., & the Alzheimer’s Disease Neuroimaging Initiative. (2016). Label-aligned multi-task feature learning for multimodal classification of Alzheimer’s disease and mild cognitive impairment. Brain Imaging and Behavior, 10(4), 1148–1159. doi:10.1007/s11682-015-9480-7.
- Beheshti, I., Maikusa, N., Daneshmand, M., Matsuda, H., Demirel, H., & Anbarjafari, G. (2017). Classification of Alzheimer’s disease and prediction of mild cognitive impairment conversion using histogram-based analysis of patient-specific anatomical brain connectivity networks. Journal of Alzheimer’s Disease, 60(1), 295–304. doi:10.3233/JAD-161080.
- Cui, R., Liu, M., & Li, G. (2018). Longitudinal analysis for Alzheimer’s disease diagnosis using RNN. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 1398–1401. doi:10.1109/ISBI.2018.8363833.
- Vaithinathan, K., & Parthiban, L. (2019). A Novel Texture Extraction Technique with T1 Weighted MRI for the Classification of Alzheimer’s Disease. Journal of Neuroscience Methods, 318, 84–99. doi:10.1016/j.jneumeth.2019.01.011.
- Zhou, P., Jiang, S., Yu, L., Feng, Y., Chen, C., Li, F., Liu, Y., & Huang, Z. (2021). Use of a Sparse-Response Deep Belief Network and Extreme Learning Machine to Discriminate Alzheimer’s Disease, Mild Cognitive Impairment, and Normal Controls Based on Amyloid PET/MRI Images. Frontiers in Medicine, 7. doi:10.3389/fmed.2020.621204.
- Zarei, A., Keshavarz, A., Jafari, E., Nemati, R., Farhadi, A., Gholamrezanezhad, A., Rostami, H., & Assadi, M. (2024). Automated classification of Alzheimer’s disease, mild cognitive impairment, and cognitively normal patients using 3D convolutional neural network and radiomic features from T1-weighted brain MRI: A comparative study on detection accuracy. Clinical Imaging, 115, 110301. doi:10.1016/j.clinimag.2024.110301
|