- Bieniawski, Z. T. (1974). Geomechanics Classification of Rock Masses and Its Application in Tunneling. Proceedings of 3rd Congress of the International Society of Rock Mechanics, Denever National Academy of Sciences, Denver, United States.
- Cargill, J. S., & Shakoor, A. (1990). Evaluation of empirical methods for measuring the uniaxial compressive strength of rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 27(6), 495–503. doi:10.1016/0148-9062(90)91001-N.
- Kanji, M., He, M., & Ribeiro e Sousa, L. (Eds.). (2020). Soft Rock Mechanics and Engineering. Springer, Cham, Switzerland. doi:10.1007/978-3-030-29477-9.
- Ulusay, R. (Ed.). (2015). The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014. Springer, Cham, Switzerland. doi:10.1007/978-3-319-07713-0.
- Zhang, L. (2016). Engineering properties of rocks. Butterworth-Heinemann, Waltham, United States.
- Hawkins, A. B., & Oivert, J. A. G. (1986). Point Load Tests: Correlation factors and contractual use. An example from the Corallian at Weymouth. Geological Society Engineering Geology Special Publication, 2(1), 269–271. doi:10.1144/GSL.1986.002.01.48.
- Romana, M. (1999). Correlation between uniaxial compressive and point-load (Franklin test) strengths for different rock classes. 9th ISRM Congress, 25 August, 1999 Paris, France.
- Rusnak, J., & Mark, C. (2000). Using the point load test to determine the uniaxial compressive strength of coal measure rock. Proceedings of the 19th International Conference on Ground Control in Mining, August 8-10, 2000, Morgantown, United States.
- Tsiambaos, G., & Sabatakakis, N. (2004). Considerations on strength of intact sedimentary rocks. Engineering Geology, 72(3–4), 261–273. doi:10.1016/j.enggeo.2003.10.001.
- Singh, T. N., Kainthola, A., & Venkatesh, A. (2012). Correlation between point load index and uniaxial compressive strength for different rock types. Rock Mechanics and Rock Engineering, 45(2), 259–264. doi:10.1007/s00603-011-0192-z.
- Garrido, M. E., Petnga, F. B., Martínez-Ibáñez, V., Serón, J. B., Hidalgo-Signes, C., & Tomás, R. (2022). Predicting the Uniaxial Compressive Strength of a Limestone Exposed to High Temperatures by Point Load and Leeb Rebound Hardness Testing. Rock Mechanics and Rock Engineering, 55(1), 1–17. doi:10.1007/s00603-021-02647-0.
- Sadeghi, E., Nikudel, M. R., Khamehchiyan, M., & Kavussi, A. (2022). Estimation of Unconfined Compressive Strength (UCS) of Carbonate Rocks by Index Mechanical Tests and Specimen Size Properties: Central Alborz Zone of Iran. Rock Mechanics and Rock Engineering, 55(1), 125–145. doi:10.1007/s00603-021-02532-w.
- Sachpazis, C. I. (1990). Correlating schmidt hardness with compressive strength and young’s modulus of carbonate rocks. Bulletin of the International Association of Engineering Geology, 42(1), 75–83. doi:10.1007/BF02592622.
- Katz, O., Reches, Z., & Roegiers, J. C. (2000). Evaluation of mechanical rock properties using a Schmidt Hammer. International Journal of Rock Mechanics and Mining Sciences, 37(4), 723–728. doi:10.1016/S1365-1609(00)00004-6.
- Kahraman, S. (2001). Evaluation of simple methods for assessing the uniaxial compressive strength of rock. International Journal of Rock Mechanics and Mining Sciences, 38(7), 981–994. doi:10.1016/S1365-1609(01)00039-9.
- Mostyn, G. R., & Li, K. S. (2020). Probabilistic slope analysis — State-of-play. Probabilistic Methods in Geotechnical Engineering, 89–109. doi:10.1201/9781003077749-6.
- Yaşar, E., & Erdoǧan, Y. (2004). Estimation of rock physicomechanical properties using hardness methods. Engineering Geology, 71(3–4), 281–288. doi:10.1016/S0013-7952(03)00141-8.
- Shalabi, F. I., Cording, E. J., & Al-Hattamleh, O. H. (2007). Estimation of rock engineering properties using hardness tests. Engineering Geology, 90(3–4), 138–147. doi:10.1016/j.enggeo.2006.12.006.
- Aldeeky, H., Al Hattamleh, O., & Rababah, S. (2020). Assessing the uniaxial compressive strength and tangent Young’s modulus of basalt rock using the leeb rebound hardness test. Materiales de Construccion, 70(340), 230– 230. doi:10.3989/MC.2020.15119.
- Pappalardo, G. (2015). Correlation Between P-Wave Velocity and Physical–Mechanical Properties of Intensely Jointed Dolostones, Peloritani Mounts, NE Sicily. Rock Mechanics and Rock Engineering, 48(4), 1711–1721. doi:10.1007/s00603-014-0607-8.
- Abdelhedi, M., Aloui, M., Mnif, T., & Abbes, C. (2017). Ultrasonic velocity as a tool for mechanical and physical parameters prediction within carbonate rocks. Geomechanics and Engineering, 13(3), 371–384. doi:10.12989/gae.2017.13.3.371.
- Gomez-Heras, M., Benavente, D., Pla, C., Martinez-Martinez, J., Fort, R., & Brotons, V. (2020). Ultrasonic pulse velocity as a way of improving uniaxial compressive strength estimations from Leeb hardness measurements. Construction and Building Materials, 261, 119996. doi:10.1016/j.conbuildmat.2020.119996.
- Benavente, D., Martinez-Martinez, J., Galiana-Merino, J. J., Pla, C., de Jongh, M., & Garcia-Martinez, N. (2022). Estimation of uniaxial compressive strength and intrinsic permeability from ultrasounds in sedimentary stones used as heritage building materials. Journal of Cultural Heritage, 55, 346–355. doi:10.1016/j.culher.2022.04.010.
- Chen, J., Du, C., Jiang, D., Fan, J., & He, Y. (2016). The mechanical properties of rock salt under cyclic loading-unloading experiments. Geomechanics and Engineering, 10(3), 325–334. doi:10.12989/gae.2016.10.3.325.
- Komadja, G. C., Stanislas, T. T., Munganyinka, P., Anye, V., Pradhan, S. P., Adebayo, B., & Onwualu, A. P. (2022). New approach for assessing uniaxial compressive strength of rocks using measurement from nanoindentation experiments. Bulletin of Engineering Geology and the Environment, 81(8), 299. doi:10.1007/s10064-022-02801-0.
- Deere, D. U., & Miller, R. P. (1966). Engineering Classification and Index Properties for Intact Rock. Defense Technical Information Center, Fort Belvoir, United States. doi:10.21236/ad0646610.
- Hawkins, A. B., & McConnell, B. J. (1992). Sensitivity of sandstone strength and deformability to changes in moisture content. Quarterly Journal of Engineering Geology, 25(2), 115–130. doi:10.1144/gsl.qjeg.1992.025.02.05.
- Lashkaripour, G. R. (2002). Predicting mechanical properties of mudrock from index parameters. Bulletin of Engineering Geology and the Environment, 61(1), 73–77. doi:10.1007/s100640100116.
- Yilmaz, I. (2010). Influence of water content on the strength and deformability of gypsum. International Journal of Rock Mechanics and Mining Sciences, 47(2), 342–347. doi:10.1016/j.ijrmms.2009.09.002.
- Jaeger, J. C., Cook, N. G., & Zimmerman, R. (2009). Fundamentals of rock mechanics. John Wiley & Sons, Hoboken, United States.
- Bieniawski, Z. T. (1974). Estimating the Strength of Rock Materials. Journal of The South African Institute of Mining and Metallurgy, 74(8), 312–320. doi:10.1016/0148-9062(74)91782-3.
- Johnston, I. W. (1985). Strength of intact geomechanical materials. Journal of Geotechnical Engineering, 111(6), 730–749. doi:10.1061/(ASCE)0733-9410(1985)111:6(730).
- Ramamurthy, T., Rao, G. V., & Rao, K. S. (1985). A strength criterion for rocks. Proceedings of the Indian Geotechnical Conference, 16-18 December, 1985, Roorkee, India.
- Hoek, E., & Brown, E. T. (1980). Empirical Strength Criterion for Rock Masses. Journal of the Geotechnical Engineering Division, 106(9), 1013–1035. doi:10.1061/ajgeb6.0001029.
- Veríssimo-Anacleto, J., Ludovico-Marques, M., & Neto, P. (2020). An empirical model for compressive strength of the limestone masonry based on number of courses – An experimental study. Construction and Building Materials, 258, 119508. doi:10.1016/j.conbuildmat.2020.119508.
- Mahmoodzadeh, A., Mohammadi, M., Hashim Ibrahim, H., Nariman Abdulhamid, S., Ghafoor Salim, S., Farid Hama Ali, H., & Kamal Majeed, M. (2021). Artificial intelligence forecasting models of uniaxial compressive strength. Transportation Geotechnics, 27, 100499. doi:10.1016/j.trgeo.2020.100499.
- Alzabeebee, S., Mohammed, D. A., & Alshkane, Y. M. (2022). Experimental Study and Soft Computing Modeling of the Unconfined Compressive Strength of Limestone Rocks Considering Dry and Saturation Conditions. Rock Mechanics and Rock Engineering, 55(9), 5535–5554. doi:10.1007/s00603-022-02948-y.
- Lawal, A. I., Kwon, S., Aladejare, A. E., & Oniyide, G. O. (2022). Prediction of the static and dynamic mechanical properties of sedimentary rock using soft computing methods. Geomechanics and Engineering, 28(3), 313–334. doi:10.12989/gae.2022.28.3.313.
- Özdemir, E. (2022). A New Predictive Model for Uniaxial Compressive Strength of Rock Using Machine Learning Method: Artificial Intelligence-Based Age-Layered Population Structure Genetic Programming (ALPS-GP). Arabian Journal for Science and Engineering, 47(1), 629–639. doi:10.1007/s13369-021-05761-x.
- Jing, L., & Hudson, J. A. (2002). Numerical methods in rock mechanics. International Journal of Rock Mechanics and Mining Sciences, 39(4), 409–427. doi:10.1016/S1365-1609(02)00065-5.
- Fuenkajorn, K., & Serata, S. (1993). Numerical simulation of strain-softening and dilation of rock salt. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(7), 1303–1306. doi:10.1016/0148-9062(93)90113-r.
- Mohammad, N., Reddish, D. J., & Stace, L. R. (1997). The relation between in situ and laboratory rock properties used in numerical modelling. International Journal of Rock Mechanics and Mining Sciences, 34(2), 289–297. doi:10.1016/S0148-9062(96)00060-5.
- Lu, Y. B., Li, Q. M., & Ma, G. W. (2010). Numerical investigation of the dynamic compressive strength of rocks based on split Hopkinson pressure bar tests. International Journal of Rock Mechanics and Mining Sciences, 47(5), 829–838. doi:10.1016/j.ijrmms.2010.03.013.
- TOKASHIKI, N., & AYDAN, Ö. (2010). the Stability Assessment of Overhanging Ryukyu Limestone Cliffs With an Emphasis on the Evaluation of Tensile Strength of Rock Mass. Doboku Gakkai Ronbunshuu C, 66(2), 397–406. doi:10.2208/jscejc.66.397.
- Bidgoli, M. N., Zhao, Z., & Jing, L. (2013). Numerical evaluation of strength and deformability of fractured rocks. Journal of Rock Mechanics and Geotechnical Engineering, 5(6), 419–430. doi:10.1016/j.jrmge.2013.09.002.
- Xu, T., Ranjith, P. G., Wasantha, P. L. P., Zhao, J., Tang, C. A., & Zhu, W. C. (2013). Influence of the geometry of partially-spanning joints on mechanical properties of rock in uniaxial compression. Engineering Geology, 167, 134–147. doi:10.1016/j.enggeo.2013.10.011.
- Wang, S. Y., Sloan, S. W., Sheng, D. C., Yang, S. Q., & Tang, C. A. (2014). Numerical study of failure behaviour of pre-cracked rock specimens under conventional triaxial compression. International Journal of Solids and Structures, 51(5), 1132–1148. doi:10.1016/j.ijsolstr.2013.12.012.
- Rathnaweera, T. D., Ranjith, P. G., Perera, M. S. A., & De Silva, V. R. S. (2017). Development of a laboratory-scale numerical model to simulate the mechanical behaviour of deep saline reservoir rocks under varying salinity conditions in uniaxial and triaxial test environments. Measurement, 101, 126–137. doi:10.1016/j.measurement.2017.01.015.
- Xu, Z. H., Wang, W. Y., Lin, P., Xiong, Y., Liu, Z. Y., & He, S. J. (2020). A parameter calibration method for PFC simulation: Development and a case study of limestone. Geomechanics and Engineering, 22(1), 97–108. doi:10.12989/gae.2020.22.1.097.
- Yin, Y., Li, G., Liu, Y., Jiang, X., & Luan, W. (2021). Research on uniaxial compression of jointed rock mass based on numerical simulation. IOP Conference Series: Earth and Environmental Science, 804(2), 22053. doi:10.1088/1755-1315/804/2/022053.
- Noorian-Bidgoli, M. (2014). Strength and deformability of fractured rocks. PhD Thesis, KTH Royal Institute of Technology, Stockholm, Sweden.
- Itasca, FLAC. (2000). Fast Lagrangian analysis of continua. Itasca Consulting Group Inc., Minneapolis, United States.
- Harrison, J. P., & Hudson, J. A. (2000). Introduction. Engineering Rock Mechanics Part II, 3–11, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-008043010-2/50002-2.
- Sano, O., Ito, I., & Terada, M. (1981). Influence of strain rate on dilatancy and strength of Oshima granite under uniaxial compression. Journal of Geophysical Research, 86(B10), 9299–9311. doi:10.1029/JB086iB10p09299.
- Mogi, K. (2012). How I developed a true triaxial rock testing machine. True Triaxial Testing of Rocks, 4, 139–157. doi:10.1201/b12705.
|