| تعداد نشریات | 31 |
| تعداد شمارهها | 519 |
| تعداد مقالات | 5,034 |
| تعداد مشاهده مقاله | 7,662,370 |
| تعداد دریافت فایل اصل مقاله | 5,707,126 |
A-Roberts orthogonality in C*-algebras and its characterization via a-numerical ranges | ||
| Caspian Journal of Mathematical Sciences | ||
| دوره 14، شماره 1 - شماره پیاپی 27، 2025، صفحه 84-95 اصل مقاله (153 K) | ||
| نوع مقاله: Research Articles | ||
| شناسه دیجیتال (DOI): 10.22080/cjms.2025.28593.1742 | ||
| نویسندگان | ||
| Mahdi Dehghani* 1؛ Hooriye Sadat Jalali Ghamsari2 | ||
| 1Department of Mathematical Sciences, Yazd University, Yazd, Iran. | ||
| 2Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran | ||
| تاریخ دریافت: 20 بهمن 1403، تاریخ بازنگری: 28 اردیبهشت 1404، تاریخ پذیرش: 29 اردیبهشت 1404 | ||
| چکیده | ||
| Let $ \mathcal{A} $ be a unital $ C^{*} $-algebra with unit $1_{\mathcal{A}}$ and let $ a\in\mathcal{A} $ be a positive and invertible element. Set \[ \mathcal{S}_a (\mathcal{A})=\{ \dfrac{f}{f(a)} \, : \, f \in \mathcal{S}(\mathcal{A}), \, f(a)\neq 0\}, \] where $ \mathcal{S}(\mathcal{A}) $ is the set of all states on $ \mathcal{A} $. In this paper, by using the concept of algebraic $a$-Davies-Wielandt shell of elements of $\mathcal{A}$, we obtain a characterization of Roberts orthogonality with respect to the norm: \[ \|x\|_a = \sup_{\varphi \in \mathcal{S}_a(\mathcal{A})} \sqrt{\varphi(x^* ax)}\quad (x\in \mathcal{A}),\] in $C^*$-algebra $\mathcal{A}$, so called, $a$-Roberts orthogonality. More precisely, for any $a$-isometry $x\in\mathcal{A}$, we prove that $x$ is $a$-Roberts orthogonal to $1_{\mathcal{A}}$ if and only if algebraic $a$-numerical range of $x$ is symmetric with respect to the origin. | ||
| کلیدواژهها | ||
| C*-algebra؛ state space of C*-algebras؛ a-Birkhoff-James orthogonality؛ a-Roberts orthogonality؛ algebraic a-numerical range | ||
|
آمار تعداد مشاهده مقاله: 72 تعداد دریافت فایل اصل مقاله: 73 |
||