- Li, D., Zhuge, Y., Gravina, R., Mills, J. E. Compressive Stress Strain Behavior of Crumb Rubber Concrete (CRC) and Application in Reinforced CRC Slab. Construction and Building Materials, 2018; 166: 745–759. doi:10.1016/j.conbuildmat.2018.01.142.
- Zarei, M., Rahmani, Z., Zahedi, M., Nasrollahi, M. Technical, Economic, and Environmental Investigation of the Effects of Rubber Powder Additive on Asphalt Mixtures. Journal of Transportation Engineering, Part B: Pavements, 2020; 146 (1): 04019039. doi:10.1061/jpeodx.0000142.
- Tayebi, M., Nematzadeh, M. Post-Fire Flexural Performance and Microstructure of Steel Fiber-Reinforced Concrete with Recycled Nylon Granules and Zeolite Substitution. Structures, 2021; 33: 2301–2316. doi:10.1016/j.istruc.2021.05.080.
- Thomas, B. S., Chandra Gupta, R. Properties of High Strength Concrete Containing Scrap Tire Rubber. Journal of Cleaner Production, 2016; 113: 86–92. doi:10.1016/j.jclepro.2015.11.019.
- Gupta, T., Chaudhary, S., Sharma, R. K. Assessment of Mechanical and Durability Properties of Concrete Containing Waste Rubber Tire as Fine Aggregate. Construction and Building Materials, 2014; 73: 562–574. doi:10.1016/j.conbuildmat.2014.09.102.
- Pelisser, F., Zavarise, N., Longo, T. A., Bernardin, A. M. Concrete Made with Recycled Tire Rubber: Effect of Alkaline Activation and Silica Fume Addition. Journal of Cleaner Production, 2011; 19 (6–7): 757–763. doi:10.1016/j.jclepro.2010.11.014.
- Mousavimehr, M., Nematzadeh, M. Predicting Post-Fire Behavior of Crumb Rubber Aggregate Concrete. Construction and Building Materials, 2019; 229. doi:10.1016/j.conbuildmat.2019.116834.
- Wang, H. Y., Chen, B. T., Wu, Y. W. A Study of the Fresh Properties of Controlled Low-Strength Rubber Lightweight Aggregate Concrete (CLSRLC). Construction and Building Materials, 2013; 41: 526–531. doi:10.1016/j.conbuildmat.2012.11.113.
- Al-Tayeb, M. M., Abu Bakar, B. H., Akil, H. M., Ismail, H. Performance of Rubberized and Hybrid Rubberized Concrete Structures under Static and Impact Load Conditions. Experimental Mechanics, 2013; 53 (3): 377–384. doi:10.1007/s11340-012-9651-z.
- Yung, W. H., Yung, L. C., Hua, L. H. A Study of the Durability Properties of Waste Tire Rubber Applied to Self-Compacting Concrete. Construction and Building Materials, 2013; 41: 665–672. doi:10.1016/j.conbuildmat.2012.11.019.
- Yilmaz, A., Degirmenci, N. Possibility of Using Waste Tire Rubber and Fly Ash with Portland Cement as Construction Materials. Waste Management, 2009; 29 (5): 1541–1546. doi:10.1016/j.wasman.2008.11.002.
- Nematzadeh, M., Mousavimehr, M. Residual Compressive Stress–Strain Relationship for Hybrid Recycled PET–Crumb Rubber Aggregate Concrete after Exposure to Elevated Temperatures. Journal of Materials in Civil Engineering, 2019; 31 (8). doi:10.1061/(asce)mt.1943-5533.0002749.
- Gjørv O. E. High-strength concrete. Developments in the Formulation and Reinforcement of Concrete. 2008. Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/b978-0-08-102616-8.00007-1.
- Ferreira R. M, Jalali S., Gjørv O. E. Probabilistic assessment of the durability performance of concrete structures. Engenharia Civil UM, 2004; 39-48.
- Singh, S., Nagar, R., Agrawal, V., Rana, A., Tiwari, A. Sustainable Utilization of Granite Cutting Waste in High Strength Concrete. Journal of Cleaner Production, 2016; 116: 223–235. doi:10.1016/j.jclepro.2015.12.110.
- Mohammed, A. A., Karim, S. H. Impact Strength and Mechanical Properties of High Strength Concrete Containing PET Waste Fiber. Journal of Building Engineering, 2023; 68. doi:10.1016/j.jobe.2023.106195.
- Bilow, D. N., Kamara, M. E. Fire and Concrete Structures. Proceedings of the 2008 Structures Congress - Structures Congress 2008: Crossing the Borders, 2008; 314: 1–10. doi:10.1061/41016(314)299.
- Hassanli, R., Youssf, O., Mills, J. E. Experimental Investigations of Reinforced Rubberized Concrete Structural Members. Journal of Building Engineering, 2017; 10: 149–165. doi:10.1016/j.jobe.2017.03.006.
- Xue, J., Shinozuka, M. Rubberized Concrete: A Green Structural Material with Enhanced Energy-Dissipation Capability. Construction and Building Materials, 2013; 42: 196–204. doi:10.1016/j.conbuildmat.2013.01.005.
- Karimi, A., Nematzadeh, M. Axial Compressive Performance of Steel Tube Columns Filled with Steel Fiber-Reinforced High Strength Concrete Containing Tire Aggregate after Exposure to High Temperatures. Engineering Structures, 2020; 219. doi:10.1016/j.engstruct.2020.110608.
- Guo, Y. C., Zhang, J. H., Chen, G. M., Xie, Z. H. Compressive Behaviour of Concrete Structures Incorporating Recycled Concrete Aggregates, Rubber Crumb and Reinforced with Steel Fibre, Subjected to Elevated Temperatures. Journal of Cleaner Production, 2014; 72: 193–203. doi:10.1016/j.jclepro.2014.02.036.
- Nematzadeh, M., Shahmansouri, A. A., Fakoor, M. Post-Fire Compressive Strength of Recycled PET Aggregate Concrete Reinforced with Steel Fibers: Optimization and Prediction via RSM and GEP. Construction and Building Materials, 2020; 252. doi:10.1016/j.conbuildmat.2020.119057.
- Gupta, T., Siddique, S., Sharma, R. K., Chaudhary, S. Effect of Elevated Temperature and Cooling Regimes on Mechanical and Durability Properties of Concrete Containing Waste Rubber Fiber. Construction and Building Materials, 2017; 137: 35–45. doi:10.1016/j.conbuildmat.2017.01.065.
- Marques, A. M., Correia, J. R., De Brito, J. Post-Fire Residual Mechanical Properties of Concrete Made with Recycled Rubber Aggregate. Fire Safety Journal, 2013; 58: 49–57. doi:10.1016/j.firesaf.2013.02.002.
- Al-Mutairi, N., Al-Rukaibi, F., Bufarsan, A. Effect of Microsilica Addition on Compressive Strength of Rubberized Concrete at Elevated Temperatures. Journal of Material Cycles and Waste Management, 2010; 12 (1): 41–49. doi:10.1007/s10163-009-0243-7.
- Mousa, M. I. Effect of Elevated Temperature on the Properties of Silica Fume and Recycled Rubber-Filled High Strength Concretes (RHSC). HBRC Journal, 2017; 13 (1): 1–7. doi:10.1016/j.hbrcj.2015.03.002.
- Nematzadeh, M., Arjomandi, A., Fakoor, M., Aminian, A., Khorshidi-Mianaei, A. Pre-and Post-Heating Bar-Concrete Bond Behavior of CFRP-Wrapped Concrete Containing Polymeric Aggregates and Steel Fibers: Experimental and Theoretical Study. Engineering Structures, 2024; 321. doi:10.1016/j.engstruct.2024.118929.
- Nematzadeh, M., Hosseini, S. A., Ozbakkaloglu, T. The Combined Effect of Crumb Rubber Aggregates and Steel Fibers on Shear Behavior of GFRP Bar-Reinforced High-Strength Concrete Beams. Journal of Building Engineering, 2021; 44. doi:10.1016/j.jobe.2021.102981.
- American Concrete Institute (ACI). ACI 216R-89: Guide for determining the fire endurance of concrete elements. Farmington Hills (MI): ACI; 1989.
- American Society of Civil Engineers (ASCE). Structural fire protection. Reston (VA): ASCE; 1992. doi:10.1061/9780872628885.
- European Committee for Standardization (CEN). EN 1994-1-2: Design of composite steel and concrete structures – Part 1-2: General rules for structural fire design. Brussels (BE): CEN; 2004.
- European Committee for Standardization (CEN). EN 1992-1-2: Design of concrete structures – Part 1-2: General rules – Structural fire design. Brussels (BE): CEN; 2004.
- Comité Euro-International du Béton (CEB). Fire design of concrete structures – in accordance with CEB/FIP Model Code 90. Lausanne (CH): CEB; 1991.
- ASTM International. ASTM C150-07: Standard specification for Portland cement. West Conshohocken (PA): ASTM International; 2012. doi:10.1520/C0150-07.
- ASTM International. ASTM C33/C33M-16: Standard specification for concrete aggregates. West Conshohocken (PA): ASTM International; 2016. doi:10.1520/C0033_C0033M-16.
- ASTM International. ASTM C128-12: Standard test method for density, relative density (specific gravity), and absorption of fine aggregate. West Conshohocken (PA): ASTM International; 2015. doi:10.1520/C0128-07A.
- American Concrete Institute (ACI). ACI 211.1-91: Standard practice for selecting proportions for normal, heavyweight, and mass concrete. Farmington Hills (MI): ACI; 2008.
- ASTM International. ASTM C143/C143M-10a: Standard test method for slump of hydraulic-cement concrete. West Conshohocken (PA): ASTM International; 2012. doi:10.1520/C0143_C0143M-10A.
- ASTM International. ASTM C192/C192M-14: Standard practice for making and curing concrete test specimens in the laboratory. West Conshohocken (PA): ASTM International; 2015. doi:10.1520/C0192_C0192M-14.
- International Organization for Standardization (ISO). ISO 834-1:1999: Fire resistance tests – Elements of building construction – Part 1: General requirements. Geneva (CH): ISO; 1999.
- Manzoor, T., Bhat, J. A., Shah, A. H. Performance of Geopolymer Concrete at Elevated Temperature − A Critical Review. Construction and Building Materials, 2024; 420. doi:10.1016/j.conbuildmat.2024.135578.
- Babalola, O. E., Awoyera, P. O., Le, D. H., Bendezú Romero, L. M. A Review of Residual Strength Properties of Normal and High Strength Concrete Exposed to Elevated Temperatures: Impact of Materials Modification on Behaviour of Concrete Composite. Construction and Building Materials, 2021; 296. doi:10.1016/j.conbuildmat.2021.123448.
- ASTM International. ASTM C39/C39M-14: Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken (PA): ASTM International; 2014. doi:10.1520/C0039_C0039M-14.
- ASTM International. ASTM C496-96: Standard test method for splitting tensile strength of cylindrical concrete specimens. West Conshohocken (PA): ASTM International; 2017. doi:10.1520/C0496-96.
- ASTM International. ASTM C469/C469M-10: Standard test method for static modulus of elasticity and Poisson's ratio of concrete in compression. West Conshohocken (PA): ASTM International; 2014. doi:10.1520/C0469_C0469M-10.
- Tayeh, B. A., Zeyad, A. M., Agwa, I. S., Amin, M. Effect of Elevated Temperatures on Mechanical Properties of Lightweight Geopolymer Concrete. Case Studies in Construction Materials, 2021; 15. doi:10.1016/j.cscm.2021.e00673.
- Fernandes, B., Carré, H., Mindeguia, J. C., Perlot, C., La Borderie, C. Effect of Elevated Temperatures on Concrete Made with Recycled Concrete Aggregates - An Overview. Journal of Building Engineering, 2021; 44. doi:10.1016/j.jobe.2021.103235.
- Tu, W., Zhang, M. Behaviour of Alkali-Activated Concrete at Elevated Temperatures: A Critical Review. Cement and Concrete Composites, 2023; 138. doi:10.1016/j.cemconcomp.2023.104961.
- Gesoglu, M., Güneyisi, E., Hansu, O., Ipek, S., Asaad, D. S. Influence of Waste Rubber Utilization on the Fracture and Steel-Concrete Bond Strength Properties of Concrete. Construction and Building Materials, 2015; 101: 1113–1121. doi:10.1016/j.conbuildmat.2015.10.030.
- Murthy, A. R. C., Palani, G. S., Iyer, N. R. State-of-the-Art Review on Fracture Analysis of Concrete Structural Components. Sadhana - Academy Proceedings in Engineering Sciences, 2009; 34 (2): 345–367. doi:10.1007/s12046-009-0014-0.
- Yesilata, B., Isiker, Y., Turgut, P. Thermal Insulation Enhancement in Concretes by Adding Waste PET and Rubber Pieces. Construction and Building Materials, 2009; 23 (5): 1878–1882. doi:10.1016/j.conbuildmat.2008.09.014.
- Fawzy, H., Mustafa, S., Abd El Badie, A. Effect of Elevated Temperature on Concrete Containing Waste Tires Rubber. The Egyptian International Journal of Engineering Sciences and Technology, 2020; 29 (1): 1–13. doi:10.21608/eijest.2020.97315.
- Zheng, L., Huo, X. S., Yuan, Y. Strength, Modulus of Elasticity, and Brittleness Index of Rubberized Concrete. Journal of Materials in Civil Engineering, 2008; 20 (11): 692–699. doi:10.1061/(asce)0899-1561(2008)20:11(692).
- Correia, J. R., Lima, J. S., De Brito, J. Post-Fire Mechanical Performance of Concrete Made with Selected Plastic Waste Aggregates. Cement and Concrete Composites, 2014; 53: 187–199. doi:10.1016/j.cemconcomp.2014.07.004.
- Abdullah, W., AbdulKadir, M., Muhammad, M. Effect of High Temperature on Mechanical Properties of Rubberized Concrete Using Recycled Tire Rubber as Fine Aggregate Replacement. Engineering and Technology Journal, 2018; 36 (8A): 906–913. doi:10.30684/etj.36.8a.10.
- Beushausen, H., Dittmer, T. The Influence of Aggregate Type on the Strength and Elastic Modulus of High Strength Concrete. Construction and Building Materials, 2015; 74: 132–139. doi:10.1016/j.conbuildmat.2014.08.055.
- Georgali, B., Tsakiridis, P. E. Microstructure of Fire-Damaged Concrete. A Case Study. Cement and Concrete Composites, 2005; 27 (2): 255–259. doi:10.1016/j.cemconcomp.2004.02.022.
- Huang, Z., Liew, J. Y. R., Li, W. Evaluation of Compressive Behavior of Ultra-Lightweight Cement Composite after Elevated Temperature Exposure. Construction and Building Materials, 2017; 148: 579–589. doi:10.1016/j.conbuildmat.2017.04.121.
- Zheng, W., Luo, B., Wang, Y. Stress–Strain Relationship of Steel-Fibre Reinforced Reactive Powder Concrete at Elevated Temperatures. Materials and Structures/Materiaux et Constructions, 2015; 48 (7): 2299–2314. doi:10.1617/s11527-014-0312-9.
- Akbarzadeh Bengar, H., Shahmansouri, A. A., Akkas Zangebari Sabet, N., Kabirifar, K., W.Y. Tam, V. Impact of Elevated Temperatures on the Structural Performance of Recycled Rubber Concrete: Experimental and Mathematical Modeling. Construction and Building Materials, 2020; 255. doi:10.1016/j.conbuildmat.2020.119374.
- Chen, G. M., He, Y. H., Yang, H., Chen, J. F., Guo, Y. C. Compressive Behavior of Steel Fiber Reinforced Recycled Aggregate Concrete after Exposure to Elevated Temperatures. Construction and Building Materials, 2014; 71: 1–15. doi:10.1016/j.conbuildmat.2014.08.012.
- Sheikh, S., Uzumeri, S. M. Analytical Model for Concrete Confinement in Tied Columns. Journal of the Structural Division, 1982; 108 (ST12): 2703–2722. doi:10.1061/jsdeag.0006100.
- Frangou, M., Pilakoutas, K., Dritsos, S. Structural Repair/Strengthening of RC Columns. Construction and Building Materials, 1995; 9 (5): 259–266. doi:10.1016/0950-0618(95)00013-6.
- Tasdemir, M. A., Tasdemir, C., Akyüz, S., Jefferson, A. D., Lydon, F. D., Barr, B. I. G. Evaluation of Strains at Peak Stresses in Concrete: A Three-Phase Composite Model Approach. Cement and Concrete Composites, 1998; 20 (4): 301–318. doi:10.1016/S0958-9465(98)00012-2.
- Nataraja, M. C., Dhang, N., Gupta, A. P. Stress-Strain Curves for Steel-Fiber Reinforced Concrete under Compression. Cement and Concrete Composites, 1999; 21 (5–6): 383–390. doi:10.1016/S0958-9465(99)00021-9.
- Nematzadeh, M., Salari, A., Ghadami, J., Naghipour, M. Stress-Strain Behavior of Freshly Compressed Concrete under Axial Compression with a Practical Equation. Construction and Building Materials, 2016; 115: 402–423. doi:10.1016/j.conbuildmat.2016.04.045.
|