- Kawakami, F., Asada, A. Damage to the ground and earth structures by the Niigata earthquake of June 16, 1964. Soils and Foundations, 1966; 6: 14-30. doi:10.3208/sandf1960.6.14.
- Kishida, H. Damage to reinforced concrete buildings in Niigata city with special reference to foundation engineering. Soils and Foundations, 1966; 6: 71-88. doi:10.3208/sandf1960.6.71.
- Ohsaki, Y. Niigata earthquakes, 1964 building damage and soil condition. Soils and Foundations, 1966; 6: 14-37. doi:10.3208/sandf1960.6.2_14.
- Yoshimi, Y., Tokimatsu, K. Settlement of buildings on saturated sand during earthquakes. Soils and Foundations, 1977; 17: 23-38. doi:10.3208/sandf1972.17.23.
- Nagase, H., Ishihara, K. Liquefaction-induced compaction and settlement of sand during earthquakes. Soils and Foundations, 1988; 28: 65-76. doi:10.3208/sandf1972.28.65.
- Seed, H. B., Idriss, I. M. Analysis of soil liquefaction: Niigata earthquake. Journal of the Soil Mechanics and Foundations Division, 1967; 93: 83-108. doi:10.1061/JSFEAQ.0000981.
- Acacio, A. A., Kobayashi, Y., Towhata, I., Bautista, R., Ishihara, K. Subsidence of building foundation resting upon liquefied subsoil: case studies and assessment. Soils and Foundations, 2001; 41: 111-128. doi:10.3208/sandf.41.6_111.
- Ishihara, K., Acacio, A. A., Towhata, I. Liquefaction-induced ground damage in Dagupan in the July 16, 1990 Luzon earthquake. Soils and Foundations, 1993; 33: 133-154. doi:10.3208/sandf1972.33.133.
- Tokimatsu, K., Kojima, H., Kuwayama, S., Abe, A., Midorikawa, S. Liquefaction-induced damage to buildings in 1990 Luzon earthquake. Journal of Geotechnical Engineering, 1994; 120: 290-307. doi:10.1061/(ASCE)0733-9410(1994)120:2(290).
- Yasui, M. Settlement and inclination of reinforced concrete buildings in Dagupan City due to liquefaction during the 1990 Philippine earthquake. In: The 10th World Conference on Earthquake Engineering; 1992 Jul 19-24; Madrid, Spain. p. 147-152.
- Bray, J. D., Sancio, R. B., Durgunoglu, T., Onalp, A., Youd, T. L., Stewart, J. P., Seed, R. B., Cetin, O. K., Bol, E., Baturay, M. B. Subsurface characterization at ground failure sites in Adapazari, Turkey. Journal of geotechnical and geoenvironmental engineering, 2004; 130: 673-685. doi:10.1061/(ASCE)1090-0241(2004)130:7(673).
- Sancio, R., Bray, J. D., Durgunoglu, T., Onalp, A. Performance of buildings over liquefiable ground in Adapazari, Turkey. In: The 13th World Conference on Earthquake Engineering; 2004 Aug 1-6; Vancouver, Canada. p. 1-15.
- Yoshida, N., Tokimatsu, K., Yasuda, S., Kokusho, T., Okimura, T. Geotechnical aspects of damage in Adapazari city during 1999 Kocaeli, Turkey earthquake. Soils and Foundations, 2001; 41: 25-45. doi:10.3208/sandf.41.4_25.
- Coelho, P., Haigh, S., Madabhushi, S. Centrifuge modelling of liquefaction of saturated sand under cyclic loading. In: Proceedings of the international conference on cyclic behaviour of soils and liquefaction phenomena; 2004 Mar 31-Apr 2; Bochum, Germany. p. 349-354.
- Coelho, P., Haigh, S. K., Madabhushi, S. G., O’Brien, T. Centrifuge modeling of the use of densification as a liquefaction resistance measure for bridge foundations. In: The 13th World Conference on Earthquake Engineering; 2004 Aug 1–6; Vancouver, Canada. p. 210-225.
- Dashti, S., Bray, J. D., Pestana, J. M., Riemer, M., Wilson, D. Mechanisms of seismically induced settlement of buildings with shallow foundations on liquefiable soil. Journal of geotechnical and geoenvironmental engineering, 2010; 136: 151-164. doi:10.1061/(ASCE)GT.1943-5606.0000179.
- Dashti, S., Bray, J. D., Pestana, J. M., Riemer, M., Wilson, D. Centrifuge testing to evaluate and mitigate liquefaction-induced building settlement mechanisms. Journal of geotechnical and geoenvironmental engineering, 2010; 136: 918-929. doi:10.1061/(ASCE)GT.1943-5606.0000306.
- Dobry, R., Liu, L. Centrifuge modeling of soil liquefaction. In: The 10th World Conference on Earthquake Engineering; 1992 Jul 19-24; Madrid, Spain. p. 6801-6809.
- Liu, L. Centrifuge earthquake modelling of liquefaction and its effect on shallow foundations, (PhD Thesis). Troy (NY): Rensselaer Polytechnic Institute; 1992.
- Liu, L., Dobry, R. Seismic response of shallow foundation on liquefiable sand. Journal of geotechnical and geoenvironmental engineering, 1997; 123: 557-567. doi:10.1061/(ASCE)1090-0241(1997)123:6(557).
- Liu, L., Dobry, R. Centrifuge study of shallow foundation on saturated sand during earthquakes. In: Proceedings from the fourth Japan-US workshop on earthquake resistant design of lifeline facilities and countermeasures for soil liquefaction; 1992 May 27-29; Honolulu, United States. p. 493-508.
- Ueng, T., Wu, C., Cheng, H., Chen, C. Settlements of saturated clean sand deposits in shaking table tests. Soil Dynamics and Earthquake Engineering, 2010; 30: 50-60. doi:10.1016/j.soildyn.2009.09.006.
- Adalier, K., Elgamal, A. Mitigation of liquefaction and associated ground deformations by stone columns. Engineering Geology, 2004; 72: 275-291. doi:10.1016/j.enggeo.2003.11.001.
- Adalier, K., Elgamal, A., Meneses, J., Baez, J. Stone columns as liquefaction countermeasure in non-plastic silty soils. Soil Dynamics and Earthquake Engineering, 2003; 23: 571-584. doi:10.1016/S0267-7261(03)00070-8.
- Asgari, A., Oliaei, M., Bagheri, M. Numerical simulation of improvement of a liquefiable soil layer using stone column and pile-pinning techniques. Soil Dynamics and Earthquake Engineering, 2013; 51: 77-96. doi:10.1016/j.soildyn.2013.04.006.
- Burcharth, H. F. Breakwaters with vertical and inclined concrete walls: Report of working group 28 of the maritime navigation commission. ed. Brussels (BE): PIANC General Secretariat; 2003.
- Lu, J., Elgamal, A., Yan, L., Law, K. H., Conte, J. P. Large-scale numerical modeling in geotechnical earthquake engineering. International Journal of Geomechanics, 2011; 11: 490-503. doi:10.1061/(ASCE)GM.1943-5622.0000042.
- Kuwano, J., Takahashi, A., Nakada, T., Yano, A., Kido, M. Centrifuge model loading tests on slope stabilizing micro-piles. In: Advances in geotechnical engineering: The Skempton conference: Proceedings of a three day conference on advances in geotechnical engineering; 2004 Mar 29-31; London, UK. p. 1080-1089.
- Nusier, O., Alawneh, A., Rabadi, R. Micropiles reinforcement for expansive soils: large-scale experimental investigation. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2007; 11: 55-60. doi:10.1680/grim.2007.11.2.55.
- Nusier, O. K., Alawneh, A. S., Abdullatit, B. Small-scale micropiles to control heave on expansive clays. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2009; 162: 27-35. doi:10.1680/grim.2009.162.1.27.
- Srinivasa Murthy, B., Sivakumar Babu, G., Srinivas, A. Analysis of bearing capacity improvement using micropiles. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2002; 6: 121-128. doi:10.1680/grim.2002.6.3.121.
- Asgari, A., Bagheri, M., Hadizadeh, M. Advanced seismic analysis of soil-foundation-structure interaction for shallow and pile foundations in saturated and dry deposits: Insights from 3D parallel finite element modeling. Structures, 2024; 69: 107503. doi:10.1016/j.istruc.2024.107503.
- Wang, M., Han, J. Numerical Modelling for Ground Improvement of Batter Micropiles on Liquefiable Soils. In: A. J. Puppala, J. Huang, J. Han, L. R. Hoyos editors. Ground Improvement and Geosynthetics. 2012. p. 212-219. doi:10.1061/41108(381)28.
- Ghassemi, S., Ekraminia, S. S., Hajialilue-Bonab, M., Tohidvand, H. R., Azarafza, M., Derakhshani, R. Innovative insights into micropile seismic response: Shaking table tests reveal critical dependencies and liquefaction mitigation. Bulletin of Engineering Geology and the Environment, 2025; 84: 206. doi:10.1007/s10064-025-04225-y.
- Jalilian, H., Yin, J. H., Panah, A. K. Shaking Table Investigation of Seismic Performance of Micropiles. In: Proceedings of GeoShanghai 2018 International Conference: Advances in Soil Dynamics and Foundation Engineering; 2018; Singapore. p. 138-147. doi:10.1007/978-981-13-0131-5_16.
- Shahrour, I., Juran, I. Seismic behaviour of micropile systems. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2004; 8: 109-120.
- Capatti, M. C., Dezi, F., Carbonari, S., Gara, F. Full-scale experimental assessment of the dynamic horizontal behavior of micropiles in alluvial silty soils. Soil Dynamics and Earthquake Engineering, 2018; 113: 58-74. doi:10.1016/j.soildyn.2018.05.029.
- Capatti, M. C., Dezi, F., Carbonari, S., Gara, F. Dynamic performance of a full-scale micropile group: Relevance of nonlinear behaviour of the soil adjacent to micropiles. Soil Dynamics and Earthquake Engineering, 2020; 128: 105858. doi:10.1016/j.soildyn.2019.105858.
- Jalilian Mashhoud, H., Yin, J.-H., Komak Panah, A., Leung, Y. F. Shaking table test study on dynamic behavior of micropiles in loose sand. Soil Dynamics and Earthquake Engineering, 2018; 110: 53-69. doi:10.1016/j.soildyn.2018.03.008.
- Alnuaim, A. M., El Naggar, M. H., El Naggar, H. Numerical investigation of the performance of micropiled rafts in sand. Computers and Geotechnics, 2016; 77: 91-105. doi:10.1016/j.compgeo.2016.04.002.
- Asgari, A., Arjomand, M. A., Bagheri, M., Ebadi-Jamkhaneh, M., Mostafaei, Y. Assessment of Experimental Data and Analytical Method of Helical Pile Capacity Under Tension and Compressive Loading in Dense Sand. Buildings, 2025; 15: 2683. doi:10.3390/buildings15152683.
- Barari, A., Bagheri, M., Rouainia, M., Ibsen, L. B. Deformation mechanisms for offshore monopile foundations accounting for cyclic mobility effects. Soil Dynamics and Earthquake Engineering, 2017; 97: 439-453. doi:10.1016/j.soildyn.2017.03.008.
- Vargas, W. Ring shear tests on large deformation of sand, (PhD Thesis). Tokyo (JP): The University of Tokyo; 1998.
- Iai, S. Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field. Soils and Foundations, 1989; 29: 105-118. doi:10.3208/sandf1972.29.105.
- Kagawa, T. On the similitude in model vibration tests of earth-structures. Proceedings of the Japan Society of Civil Engineers, 1978; 1978: 69-77. doi:10.2208/jscej1969.1978.275_69.
- Kokusho, T., Iwatate, T. Scaled model tests and numerical analyses on nonlinear dynamic response of soft grounds. Proceedings of the Japan Society of Civil Engineers, 1979; 1979: 57-67. doi:10.2208/jscej1969.1979.285_57.
- Federal Highway Administration (FHWA). FHWA-SA-97-070: FHWA, Micropile design and construction guidlines. United States Department of Transportation Federal Highway Administration: Washington (DC); 2003.
- Asgari, A., Ranjbar, F., Bagheri, M. Seismic resilience of pile groups to lateral spreading in liquefiable soils: 3D parallel finite element modeling. Structures, 2025; 74: 108578. doi:10.1016/j.istruc.2025.108578.
- Asgari, A., Golshani, A., Bagheri, M. Numerical evaluation of seismic response of shallow foundation on loose silt and silty sand. Journal of Earth System Science, 2014; 123: 365-379. doi:10.1007/s12040-013-0393-9.
- Bagheri, M., Jamkhaneh, M. E., Samali, B. Effect of seismic soil–pile–structure interaction on mid-and high-rise steel buildings resting on a group of pile foundations. International Journal of Geomechanics, 2018; 18: 04018103. doi:10.1061/(ASCE)GM.1943-5622.0001222.
- Ibsen, L. B., Asgari, A., Bagheri, M., Barari, A. Response of monopiles in sand subjected to one-way and transient cyclic lateral loading. In: R. Y. Linag, J. Qian, J. Tao editors. Advances in Soil Dynamics and Foundation Engineering. 2014. p. 312-322. doi:10.1061/9780784413425.032.
- Jafarian, Y., Bagheri, M., khalili, M. Earthquake-Induced Deformation of Breakwater on Liquefiable Soil with and Without Remediation: Case Study of Iran LNG Port. In: New Developments in Materials for Infrastructure Sustainability and the Contemporary Issues in Geo-environmental Engineering; 2019; Cham, Switzerland. p. 23-37. doi:10.1007/978-3-319-95774-6_3.
- Patrício, J. D., Gusmão, A. D., Ferreira, S. R., Silva, F. A., Kafshgarkolaei, H. J., Azevedo, A. C., Delgado, J. M. Settlement analysis of concrete-walled buildings using soil–structure interactions and finite element modeling. Buildings, 2024; 14: 746. doi:10.3390/buildings14030746.
- Shooshpasha, I., Bagheri, M. The effects of surcharge on liquefaction resistance of silty sand. Arabian Journal of Geosciences, 2014; 7: 1029-1035. doi:10.1007/s12517-012-0737-9.
- Asgari, A., Ahmadtabar Sorkhi, S. F. Wind turbine performance under multi-hazard loads: Wave, wind, and earthquake effects on liquefiable soil. Results in Engineering, 2025; 26: 104647. doi:10.1016/j.rineng.2025.104647.
- Orr, T. L., Farrell, E. R. Geotechnical design to Eurocode 7. 1st ed. Berlin (DE): Springer Science & Business Media; 2012. doi:10.1007/978-1-4471-0803-0.
- Jahangiri, V., Akbarzadeh, M. R., Shahamat, S. A., Asgari, A., Naeim, B., Ranjbar, F. Machine learning-based prediction of seismic response of steel diagrid systems. Structures, 2025; 80: 109791. doi:10.1016/j.istruc.2025.109791.
|