- Nodehi, M., Taghvaee, V. M. Alkali-Activated Materials and Geopolymer: a Review of Common Precursors and Activators Addressing Circular Economy. Circular Economy and Sustainability, 2022; 2: 165-196. doi:10.1007/s43615-021-00029-w.
- Behforouz, B., Balkanlou, V. S., Naseri, F., Kasehchi, E., Mohseni, E., Ozbakkaloglu, T. Investigation of eco-friendly fiber-reinforced geopolymer composites incorporating recycled coarse aggregates. International Journal of Environmental Science and Technology, 2020; 17: 3251-3260. doi:10.1007/s13762-020-02643-x.
- Amran, M., Debbarma, S., Ozbakkaloglu, T. Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Construction and Building Materials, 2021; 270: 121857. doi:10.1016/j.conbuildmat.2020.121857.
- Turner, L. K., Collins, F. G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 2013; 43: 125-130. doi:10.1016/j.conbuildmat.2013.01.023.
- Robbie, A. Global CO2 emissions from cement production. Earth System Science Data, 2017; 10: 195-217. doi:10.5194/essd-10-195-2018.
- Shi, C., Jiménez, A. F., Palomo, A. New cements for the 21st century: The pursuit of an alternative to Portland cement. Cement and Concrete Research, 2011; 41: 750-763. doi:10.1016/j.cemconres.2011.03.016.
- Matthes, W., Vollpracht, A., Villagrán, Y., Kamali-Bernard, S., Hooton, D., Gruyaert, E., Soutsos, M., De Belie, N. Ground Granulated Blast-Furnace Slag. In: N. De Belie, M. Soutsos, E. Gruyaert editors. Properties of Fresh and Hardened Concrete Containing Supplementary Cementitious Materials: State-of-the-Art Report of the RILEM Technical Committee 238-SCM, Working Group 4. Cham: Springer International Publishing; 2018. p. 1-53. doi:10.1007/978-3-319-70606-1_1.
- Davidovits, J. Geopolymers. Journal of thermal analysis, 1991; 37: 1633-1656. doi:10.1007/BF01912193.
- van Deventer, J. S. J., Provis, J. L., Duxson, P., Lukey, G. C. Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. Journal of Hazardous Materials, 2007; 139: 506-513. doi:10.1016/j.jhazmat.2006.02.044.
- Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O., Fernández-Jiménez, A. A review on alkaline activation: new analytical perspectives. Materiales de Construcción, 2014; 64: e022. doi:10.3989/mc.2014.00314.
- Wang, Y., Zhang, S., Li, G., Shi, X. Effects of alkali-treated recycled carbon fiber on the strength and free drying shrinkage of cementitious mortar. Journal of Cleaner Production, 2019; 228: 1187-1195. doi:10.1016/j.jclepro.2019.04.295.
- Fernández-Jiménez, A., Palomo, A. Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cement and Concrete Research, 2005; 35: 1984-1992. doi:10.1016/j.cemconres.2005.03.003.
- White, C. E., Provis, J. L., Proffen, T., van Deventer, J. S. J. Molecular mechanisms responsible for the structural changes occurring during geopolymerization: Multiscale simulation. AIChE Journal, 2012; 58: 2241-2253. doi:10.1002/aic.12743.
- Lolli, F., Manzano, H., Provis, J. L., Bignozzi, M. C., Masoero, E. Atomistic Simulations of Geopolymer Models: The Impact of Disorder on Structure and Mechanics. ACS Applied Materials & Interfaces, 2018; 10: 22809-22820. doi:10.1021/acsami.8b03873.
- Dai, X., Aydin, S., Yardimci, M. Y., Lesage, K., De Schutter, G. Early age reaction, rheological properties and pore solution chemistry of NaOH-activated slag mixtures. Cement and Concrete Composites, 2022; 133: 104715. doi:10.1016/j.cemconcomp.2022.104715.
- Aiken, T. A., Kwasny, J., Sha, W., Tong, K. T. Mechanical and durability properties of alkali-activated fly ash concrete with increasing slag content. Construction and Building Materials, 2021; 301: 124330. doi:10.1016/j.conbuildmat.2021.124330.
- Fang, Y., Zhuang, K., Zheng, D., Guo, W. The Influence of Alkali Content on the Hydration of the Slag-Based Geopolymer: Relationships between Resistivity, Setting, and Strength Development. Polymers, 2023; 15: doi:10.3390/polym15030518.
- Taghvayi, H., Behfarnia, K., Khalili, M. The Effect of Alkali Concentration and Sodium Silicate Modulus on the Properties of Alkali-Activated Slag Concrete. Journal of Advanced Concrete Technology, 2018; 16: 293-305. doi:10.3151/jact.16.293.
- Ahmed, H. U., Mohammed, A. S., Mohammed, A. A., Faraj, R. H. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes. PLOS ONE, 2021; 16: e0253006. doi:10.1371/journal.pone.0253006.
- Arularasi, V., Thamilselvi, P., Avudaiappan, S., Saavedra Flores, E. I., Amran, M., Fediuk, R., Vatin, N., Karelina, M. Rheological Behavior and Strength Characteristics of Cement Paste and Mortar with Fly Ash and GGBS Admixtures. Sustainability, 2021; 13: doi:10.3390/su13179600.
- Ansell, A. Investigation of shrinkage cracking in shotcrete on tunnel drains. Tunnelling and Underground Space Technology, 2010; 25: 607-613. doi:10.1016/j.tust.2010.04.006.
- Jameel, F., Sjölander, A., Ansell, A. Testing the in situ properties of wet-mix shotcrete at early age. ed. Boca Raton (FL): CRC Press; 2025.
- Aldawsari, S., Kampmann, R., Harnisch, J., Rohde, C. Setting Time, Microstructure, and Durability Properties of Low Calcium Fly Ash/Slag Geopolymer: A Review. Materials, 2022; 15: doi:10.3390/ma15030876.
- Gebregziabiher, B. S., Thomas, R. J., Peethamparan, S. Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders. Construction and Building Materials, 2016; 113: 783-793. doi:10.1016/j.conbuildmat.2016.03.098.
- Jiang, X., Zhang, Y., Xiao, R., Polaczyk, P., Zhang, M., Hu, W., Bai, Y., Huang, B. A comparative study on geopolymers synthesized by different classes of fly ash after exposure to elevated temperatures. Journal of Cleaner Production, 2020; 270: 122500. doi:10.1016/j.jclepro.2020.122500.
- Feng, X., Wang, Y., Li, L., Jiang, Z., Zhou, G., Wu, Q., Wang, T. Experimental investigation on physical properties and early-stage strength of ultrafine fly ash-based geopolymer grouting material. Construction and Building Materials, 2024; 441: 137526. doi:10.1016/j.conbuildmat.2024.137526.
- American Society for Testing and Materials (ASTM). ASTM C403/C403M-16: Standard Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance. West Conshohocken (PA): ASTM International; 2016. doi:10.1520/C0403_C0403M-16.
- Lee, T., Lee, J. Setting time and compressive strength prediction model of concrete by nondestructive ultrasonic pulse velocity testing at early age. Construction and Building Materials, 2020; 252: 119027. doi:10.1016/j.conbuildmat.2020.119027.
- Li, Z., Alfredo Flores Beltran, I., Chen, Y., Šavija, B., Ye, G. Early-age properties of alkali-activated slag and glass wool paste. Construction and Building Materials, 2021; 291: 123326. doi:10.1016/j.conbuildmat.2021.123326.
- Sathiparan, N., Jayasundara, W. G. B. S., Samarakoon, K. S. D., Banujan, B. Prediction of characteristics of cement stabilized earth blocks using non-destructive testing: Ultrasonic pulse velocity and electrical resistivity. Materialia, 2023; 29: 101794. doi:10.1016/j.mtla.2023.101794.
- American Society for Testing and Materials (ASTM). ASTM C136/C136M: Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. West Conshohocken (PA): ASTM International; 2019. doi:10.1520/C0136_C0136M-14.
- American Society for Testing and Materials (ASTM). ASTM C33/C33M: Standard Specification for Concrete Aggregates. West Conshohocken (PA): ASTM International; 2018. doi:10.1520/C0033_C0033M-18.
- Zhang, H., Li, L., Long, T., Sarker, P. K., Shi, X., Cai, G., Wang, Q. The Effect of Ordinary Portland Cement Substitution on the Thermal Stability of Geopolymer Concrete. Materials, 2019; 12: doi:10.3390/ma12162501.
- Naghizadeh, A., Ekolu, S. Effect of different mixture parameters on the setting time of fly ash/rice husk ash-based geopolymer mortar. MATEC Web of Conferences, 2022; 361: 05001. doi:10.1051/matecconf/202236105001.
- American Society for Testing and Materials (ASTM). ASTM C191: Standard Test Method for Time of Setting of Hydraulic Cement by Vicat Needle. West Conshohocken (PA): ASTM International; 2000. doi:10.1520/C0191-21.
- British Standards Institution. BS 1881-203: Testing concrete recommendations for measurement of velocity of ultrasonic pulses in concrete. United Kingdom: BS Standard; 1986.
- British Standards Institution. BS EN 196-3: Methods of testing cement - Determination of setting times and soundness. United Kingdom: BS Standard; 2016.
- Reinhardt, H. W., Grosse, C. U. Continuous monitoring of setting and hardening of mortar and concrete. Construction and Building Materials, 2004; 18: 145-154. doi:10.1016/j.conbuildmat.2003.10.002.
- Huseien, G. F., Sam, A. R. M., Shah, K. W., Mirza, J., Tahir, M. M. Evaluation of alkali-activated mortars containing high volume waste ceramic powder and fly ash replacing GBFS. Construction and Building Materials, 2019; 210: 78-92. doi:10.1016/j.conbuildmat.2019.03.194.
- Xu, W., Tang, Z., Xie, Y., Long, G., Zhu, H., Kai, M., Peng, L., Wang, L., Zaland, S. Effect of synthesis parameters on the alkali activation reaction degree and the relationship between reaction degree and microstructure of fly ash-based geopolymers. Journal of Building Engineering, 2024; 93: 109874. doi:10.1016/j.jobe.2024.109874.
- Yang, C., Liu, J., Liu, L., Kuang, L., Zhang, S., Chen, Z., Li, J., Shi, C. Effects of different activators on autogenous shrinkage of alkali-activated slag cement. Construction and Building Materials, 2024; 446: 138018. doi:10.1016/j.conbuildmat.2024.138018.
- Mehdizadeh, H., Najafi Kani, E. Rheology and apparent activation energy of alkali activated phosphorous slag. Construction and Building Materials, 2018; 171: 197-204. doi:10.1016/j.conbuildmat.2018.03.130.
- Abdul Rahim, R. H., Rahmiati, T., Azizli, K. A., Man, Z., Nuruddin, M. F., Ismail, L. Comparison of Using NaOH and KOH Activated Fly Ash-Based Geopolymer on the Mechanical Properties. Materials Science Forum, 2015; 803: 179-184. doi:10.4028/scientific.net/MSF.803.179.
- Robeyst, N., Gruyaert, E., Grosse, C. U., De Belie, N. Monitoring the setting of concrete containing blast-furnace slag by measuring the ultrasonic p-wave velocity. Cement and Concrete Research, 2008; 38: 1169-1176. doi:10.1016/j.cemconres.2008.04.006.
|