تعداد نشریات | 31 |
تعداد شمارهها | 499 |
تعداد مقالات | 4,850 |
تعداد مشاهده مقاله | 7,491,436 |
تعداد دریافت فایل اصل مقاله | 5,593,188 |
On the stability analysis and the solitonic wave structures for the stochastic resonant nonlinear Schrödinger equation with spatio temporal and inter-modal dispersion under generalized Kudryashov's law non-linearity | ||
Caspian Journal of Mathematical Sciences | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 29 مرداد 1404 | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22080/cjms.2025.29059.1754 | ||
نویسندگان | ||
Mostafa Eslami* 1؛ Anis Esmaeily1؛ Mohammad Mirzazadeh2؛ Hamood Rehman3 | ||
1Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran. | ||
2Department of Engineering Sciences, Faculty of Technology and Engineering, East of Guilan, University of Guilan, Rudsar -Vajargah, Iran. | ||
3Department of Mathematics, University of Okara, Okara, Pakistan. | ||
تاریخ دریافت: 01 اردیبهشت 1404، تاریخ بازنگری: 21 مرداد 1404، تاریخ پذیرش: 26 مرداد 1404 | ||
چکیده | ||
This paper discusses the optical soliton solutions of the stochastic resonant nonlinear Schrödinger equation (SRNLSE). The equation has spatio-temporal dispersion, inter-modal dispersion, multiplicative white noise, and nonlinearity under generalized Kudryashov's law. Optical soliton solutions in terms of bright, dark, periodic, and singular solitons are obtained from this equation by using the (Gˊ)/G^2 -expansion method and a new Kudryashov method. This work provides insight into soliton dynamics in nonlinear optical systems with stochastic effects, where complex dispersion interactions play a dominant role. Specifically, it shows how the interplay of spatio-temporal dispersion (SPD) and inter-modal dispersion (IMD), in the presence of multiplicative noise, determines the behavior of solitons. We also discuss the effects of multiplicative noise on the exact solutions of the nonlinear Schrödinger equation using the Maple software. The stability of critical points is discussed by linearizing the system around equilibrium solutions and graphically indicating the behavior of these solutions as well. | ||
کلیدواژهها | ||
White noise؛ Kudryashov's law non-linearity؛ (Gˊ)/G^2 -expansion method؛ New Kudryashov’s method؛ Optical Solitons | ||
آمار تعداد مشاهده مقاله: 15 |